For the case where $X$ and $Y$ have different means ($\mu_X$ and $\mu_Y$ respectively) but the same variance ($\sigma^2$), and are uncorrelated, you can use the answer posted here to get an exact solution.
Make $Z = (X, Y) \sim \mathcal{N}(\mu, \sigma^2 \mathbf{I})$, where $\mu = (\mu_X, \mu_Y)$. Also, let $\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 0
\end{bmatrix}$. Then, using the formula in the link above, and setting $n=2$, $tr(\mathbf{A})$ = 1 and $\mu' \mathbf{A} \mu = \mu_X^2$
Then, $\mathbb{E}\left(\frac{X^2}{X^2 + Y^2} \right) = \mathbb{E}\left(\frac{Z' \mathbf{A}Z}{Z'Z} \right) =
\frac{1}{2} {}_1F_1\left(1; 2; \frac{-\Vert\mu\Vert^2}{2}\right) +
\frac{1}{4} {}_1F_1\left(1; 3; \frac{-\Vert\mu\Vert^2}{2}\right) \mu_X^2
$
where ${}_1F_1$ is the Kummer confluent hypergeometric function.
For the more general case where $Z \sim \mathcal{N} (\mu, \Sigma)$ (and thus $X$ and $Y$ can have different variances and be correlated), a Taylor approximation like that described here can be used. Using that approximation, with $\Sigma = \begin{bmatrix} \sigma^2_X & \rho \\ \rho & \sigma^2_Y \end{bmatrix}$ we get the formula
\begin{equation}
\mathbb{E}\left(\frac{X^2}{X^2 + Y^2} \right) = \mathbb{E}\left(\frac{Z' \mathbf{A}Z}{Z'Z} \right) \approx \frac{\mu_N}{\mu_D}\left( 1 -
\frac{Cov(N,D)}{\mu_N \mu_D} + \frac{Var(D)}{\mu_D^2} \right)
\end{equation}
where
\begin{equation}
\begin{split}
& \mu_N = \sigma_X^2 + \mu_X^2 \\
& \mu_D = \sigma_X^2 + \sigma_Y^2 + ||\mu||^2 \\
& Var(D) = 2tr([\Sigma]^2) + 4 \mu^T \Sigma \mu \\
& Cov(N,D) = 2 tr(\Sigma A \Sigma) + 4 \mu^T \Sigma \mathbf{A} \mu
\end{split}
\end{equation}
and $N$ and $D$ stand for $Z' \mathbf{A}Z$ and $Z'Z$ respectively.