1

i have a large dataset (~3,000 datapoints, 6H interval) on Twitter and Bitcoin Data and try to estimate the effect of tweets on price changes / trading volume of Bitcoin.

Therefore, i run a VAR model with 3 lags as a result of ACFs and AIC/BIC and get the following output:

Estimation results for equation TradingV: 
========================================= 
TradingV = LM.l1 + TweetV.l1 + Price.l1 + TradingV.l1 + LM.l2 + TweetV.l2 + Price.l2 + TradingV.l2 + LM.l3 + TweetV.l3 + Price.l3 + TradingV.l3
         Estimate Std. Error t value             Pr(>|t|)    

LM.l1 -0.285972 0.076378 -3.744 0.000185 *** TweetV.l1 -0.007748 0.072017 -0.108 0.914329
Price.l1 -2.267196 0.564289 -4.018 0.0000603 *** TradingV.l1 -1.119082 0.019625 -57.022 < 0.0000000000000002 *** LM.l2 -0.123553 0.078909 -1.566 0.117512
TweetV.l2 0.103206 0.080115 1.288 0.197771
Price.l2 -1.608752 0.639476 -2.516 0.011933 *
TradingV.l2 -0.942809 0.023328 -40.415 < 0.0000000000000002 *** LM.l3 0.015644 0.075695 0.207 0.836281
TweetV.l3 0.024549 0.071821 0.342 0.732523
Price.l3 -0.958493 0.565993 -1.693 0.090474 .
TradingV.l3 -0.439742 0.019386 -22.683 < 0.0000000000000002 ***


Signif. codes: 0 ‘*’ 0.001 ‘’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.5044 on 2876 degrees of freedom Multiple R-Squared: 0.611, Adjusted R-squared: 0.6093 F-statistic: 376.4 on 12 and 2876 DF, p-value: < 0.00000000000000022

Covariance matrix of residuals: LM TweetV Price TradingV LM 0.0161318 -0.00123492 0.00036625 -0.0142670 TweetV -0.0012349 0.01898572 0.00008595 0.0334891 Price 0.0003663 0.00008595 0.00025976 -0.0009738 TradingV -0.0142670 0.03348907 -0.00097377 0.2544255

Correlation matrix of residuals: LM TweetV Price TradingV LM 1.00000 -0.07056 0.1789 -0.2227 TweetV -0.07056 1.00000 0.0387 0.4818 Price 0.17891 0.03870 1.0000 -0.1198 TradingV -0.22269 0.48185 -0.1198 1.0000

As you can see, Tweet Volume (TweetV) does not seem to have a statistical significant influence on trading volume (TradingV). However, a Granger causality test suggests that TweetV does Granger-cause TradingV and the IRF(shock in TweetV and response of TradingV) also suggests a statistical significant influence:

IRF with a shock in TweetV, response of TradingV

How is that possible, or what could be a possible explanation for this?

Thanks in advance.

Dalogh
  • 11
  • 1
    Both the GC and the IRF are functions of all lags. In, e.g., the case of GC, we test if all lags have zero coefficients via an F-test, and (you can find examples on this site, too, e.g. https://stats.stackexchange.com/questions/151403/significance-of-individual-coefficients-vs-significance-of-both/151410#151410) it is possible that an F-test rejects while all t-tests do not. – Christoph Hanck Nov 28 '22 at 12:41

0 Answers0