I'm working with (un-paired/independent) historic environmental data collected over 2 consecutive months that I compared for each calendar year (CYR). I'm wondering if the high variability between February and March is due to small-ish sample sizes, so as a thought experiment, I'd like to know what sample size I would need per group (Month) in order to compare median (water temp, salinity, etc..) between months of future fieldwork.
Using the pwr package in R...
> pwr.t.test(d=0.7, sig.level = 0.05, power = 0.80, type = "two.sample", alternative = "two.sided")
Two-sample t test power calculation
n = 33.02457
d = 0.7
sig.level = 0.05
power = 0.8
alternative = two.sided
NOTE: n is number in each group
round(33.02457*1.15,0) # paramteric + 15% approach
N per group should be 38 for future studies
My questions:
What does "d=0.7" mean? "A large/the largest effect size" due to randomness in each sample? The smaller this is, the better the chance is that any difference I see will not be due to random variation? Do I set this to what I want it to be or what it's been in the past (For example: 0.2 + 0.705/2 = about 0.5 average effect size for Feb. vs March)?
Is the "paramteric + 15% approach" (As seen here on page 52) valid for the Mann Whitney U / Wilcoxon Rank-Sum Test?
My data:
> dput(dry_high_samplesize)
structure(list(use_for_analysis = structure(c(2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L,
2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L,
2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L,
2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L,
2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 2L,
2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L,
2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 2L,
1L, 1L, 2L, 2L, 1L, 2L, 2L, 1L), levels = c("Pre_SAV", "Standard"
), class = "factor"), CYR = structure(c(4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 3L, 2L, 2L, 2L, 1L, 4L, 4L, 4L, 1L, 4L, 3L, 2L, 2L, 3L,
4L, 2L, 1L, 4L, 1L, 4L, 4L, 4L, 3L, 1L, 4L, 2L, 2L, 2L, 3L, 2L,
1L, 4L, 3L, 4L, 4L, 3L, 1L, 1L, 1L, 4L, 1L, 3L, 2L, 4L, 2L, 3L,
3L, 2L, 2L, 2L, 4L, 2L, 1L, 1L, 4L, 1L, 4L, 2L, 4L, 1L, 3L, 1L,
3L, 1L, 2L, 4L, 3L, 2L, 2L, 2L, 1L, 4L, 2L, 1L, 4L, 1L, 2L, 3L,
4L, 3L, 4L, 2L, 1L, 1L, 3L, 3L, 2L, 1L, 4L, 3L, 2L, 1L, 2L, 2L,
4L, 4L, 1L, 3L, 1L, 3L, 4L, 2L, 1L, 3L, 1L, 2L, 3L, 3L, 2L, 3L,
1L, 2L, 2L, 2L, 3L, 4L, 4L, 1L, 4L, 2L, 1L, 3L, 1L, 3L, 2L, 4L,
2L, 3L, 1L, 3L, 2L, 3L, 3L, 1L, 4L, 3L, 1L, 2L, 4L, 2L, 2L, 4L,
4L, 1L, 3L, 3L, 4L, 3L, 3L, 3L, 1L, 2L, 1L, 1L, 2L, 3L, 4L, 4L,
3L, 2L, 2L, 3L, 1L, 1L, 3L, 1L, 2L, 1L, 3L, 3L, 1L, 2L, 1L, 1L,
3L, 3L, 1L, 3L, 3L, 1L), levels = c("2006", "2015", "2016", "2018"
), class = "factor"), Season = c("DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY", "DRY",
"DRY", "DRY", "DRY", "DRY"), Month = c(3, 2, 3, 2, 2, 3, 2, 3,
4, 4, 4, 3, 3, 2, 3, 2, 3, 3, 4, 4, 4, 4, 3, 3, 2, 2, 3, 2, 3,
3, 4, 3, 3, 4, 4, 3, 4, 3, 3, 2, 3, 2, 3, 3, 2, 2, 3, 2, 2, 4,
4, 3, 3, 4, 4, 3, 3, 4, 2, 3, 3, 2, 3, 2, 3, 4, 2, 3, 4, 2, 4,
3, 3, 2, 3, 3, 4, 3, 3, 3, 3, 2, 2, 2, 4, 4, 3, 3, 3, 3, 3, 2,
4, 3, 4, 3, 2, 4, 3, 3, 3, 3, 2, 3, 2, 4, 2, 3, 3, 3, 2, 3, 3,
4, 4, 3, 4, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 4, 2, 4, 2, 3, 4, 2,
3, 3, 2, 4, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 4, 3, 2, 3, 3, 3, 3,
4, 4, 3, 2, 3, 2, 2, 3, 3, 3, 2, 3, 3, 3, 4, 2, 2, 3, 3, 3, 2,
3, 4, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3), Site = c(17, 46, 27, 37,
45, 16, 47, 26, 23, 17, 9, 47, 16, 44, 15, 36, 17, 25, 6, 8,
16, 22, 8, 40, 31, 35, 18, 43, 14, 24, 21, 15, 7, 15, 6, 31,
13, 41, 14, 42, 41, 34, 23, 47, 47, 30, 19, 40, 39, 20, 14, 6,
21, 5, 12, 39, 46, 7, 33, 30, 13, 29, 13, 38, 22, 13, 41, 20,
4, 46, 19, 8, 20, 39, 46, 45, 5, 38, 12, 12, 29, 37, 32, 28,
12, 3, 5, 40, 21, 19, 21, 45, 18, 45, 4, 7, 38, 11, 28, 11, 37,
44, 31, 4, 27, 2, 36, 27, 20, 18, 44, 39, 22, 3, 10, 34, 11,
44, 10, 27, 36, 43, 17, 3, 11, 6, 19, 10, 26, 1, 35, 38, 2, 30,
26, 26, 43, 9, 35, 33, 43, 23, 10, 16, 5, 25, 2, 42, 1, 18, 29,
9, 37, 42, 9, 15, 8, 25, 25, 24, 34, 42, 34, 32, 1, 28, 24, 23,
33, 14, 33, 41, 31, 3, 22, 24, 36, 7, 40, 32, 32, 2, 30, 35,
1, 29, 28, 4), temp = c(24.7, 24.7, 24.3, 24.8, 24.2, 24.6, 24.1,
24.6, 25.8, 23.2, 23.7, 25.8, 18.66, 25.7, 24.8, 24.6, 21.36,
24, 24.7, 24, 23.3, 25.7, 22.5, 24.8, 25.03, 24.9, 21.58, 25.6,
24.7, 24.5, 25.9, 19.24, 23.4, 23.2, 25.3, 26.3, 22.5, 25, 19.32,
24.5, 23.2, 25.7, 24.8, 26, 23.6, 25.57, 21.95, 27.1, 24.9, 24.6,
23.8, 24.2, 26.1, 24.7, 22.9, 27.4, 26.3, 25.2, 25.4, 26.4, 19.48,
25.82, 25, 25.15, 25.2, 24.1, 25.8, 23.04, 24.6, 24.18, 26, 22.85,
26, 27.3, 26.9, 26.6, 25, 28.4, 19.79, 25.3, 26.3, 25.72, 24.8,
25.29, 24.1, 25.1, 25.1, 23.1, 25.7, 26.2, 23.82, 23.9, 26.1,
27, 25.8, 23.37, 28.5, 23.9, 26.2, 20.55, 26.6, 26.2, 25.4, 24.8,
26.04, 25.3, 25.88, 28.6, 25.5, 26.8, 24.51, 23.7, 24.02, 25.9,
23.3, 28.2, 25, 26.3, 21, 26.7, 28.6, 28, 25.9, 25.5, 25.8, 23.79,
26.1, 24.7, 27.16, 25.5, 26.97, 23.7, 26.2, 25.8, 27.2, 29.9,
24.93, 24.5, 28.6, 28.3, 27.4, 24.17, 25.8, 26.1, 23.66, 26.6,
24.5, 28.1, 26.6, 25.8, 26.2, 22.13, 24, 27.2, 26.9, 25.3, 24.8,
29.5, 28.06, 27.1, 27.37, 25.89, 26, 28.7, 26, 26.7, 29.2, 27.7,
27.9, 27.2, 28.09, 26.83, 28.4, 25.52, 27.4, 28.3, 24.4, 26.1,
26.58, 28.3, 28.94, 26.3, 29.5, 24.6, 26.48, 29.9, 29.3, 24.46
), sal = c(21.29, 33.36, 15.14, 21.77, 32.4, 22.6, 32.12, 15.49,
11.92, 27.33, 30.53, 34.62, 32.48, 33.58, 25.2, 20.77, 27.89,
11.36, 23.64, 31.21, 27.49, 13.21, 29.39, 31.54, 23.99, 20.4,
25.94, 32.65, 26.36, 11.76, 13.2, 32.46, 29.36, 27.51, 31.35,
27.92, 20.49, 32.29, 32.41, 29.26, 20.01, 20.07, 11.69, 26.48,
25.8, 25.88, 24.12, 32.13, 29.3, 12.71, 28.69, 29.94, 25.05,
25.01, 21.48, 31.62, 33.74, 31.89, 20.16, 27.41, 32.55, 26.18,
27.94, 27.29, 12.98, 29.49, 25.37, 24.47, 25.29, 26.56, 15.42,
31.41, 24.39, 28.7, 26.42, 33.79, 30.42, 31.53, 31.66, 28.33,
25.14, 26.8, 17.55, 26.61, 29.8, 25.43, 30.31, 17.71, 13.05,
23.33, 19.29, 26.6, 13.54, 28.12, 31.57, 29.08, 27.46, 22.86,
24.7, 32.59, 29.62, 33.71, 16.24, 30.67, 24.28, 25.54, 26.56,
15.19, 16.56, 22.54, 26.2, 8.76, 19.63, 31.26, 22.2, 17.99, 30.07,
26.71, 29.02, 25.31, 29.7, 33.26, 18.74, 30.66, 28.95, 33.7,
13.48, 30.12, 24.23, 25.18, 25.72, 7.88, 30.94, 15.33, 25.33,
15.89, 27.07, 22.95, 29.72, 18.55, 28, 19, 29.13, 18.57, 34,
23.11, 29.77, 32.93, 32.25, 15.67, 15.12, 30.52, 9.62, 28.82,
29.05, 16.39, 23.45, 10.56, 23.72, 23.66, 25.49, 25.69, 27.77,
17.2, 30.88, 14.86, 8.06, 22.97, 27.45, 16.97, 24.86, 26.03,
17.07, 33.34, 23.65, 24.78, 10.25, 24.55, 26.69, 26.26, 25.24,
31.83, 17.7, 10.51, 32.63, 14.04, 13.7, 32.12), DO = c(5.2, 2.7,
5.3, 4, 4, 5.4, 5, 6.1, 4.68, 4.2, 3.17, 4.91, 5.99, 4.5, 4.9,
5, NA, 5.9, 3.56, 3.22, 5.2, 5.25, 5.9, 2.4, 4.47, 5.6, 9.91,
5.2, 5.9, 6.7, 6.4, NA, 5.5, 7.07, 5.17, 2.16, 4.4, 3.85, NA,
6.8, 5.57, 5.5, 6.9, 5.05, 7.89, 4.48, 5.73, 5.3, 5.96, 7.16,
3.92, 4.9, 4.94, 6.7, 4.46, 3.53, 5.45, 5.05, 6.2, 4.09, NA,
4.61, 5.1, 5.76, 7.2, 4.69, 10.2, 9.87, 6.96, 7.25, 5.8, NA,
5.64, 5.5, 7.26, 6.83, 3.35, 4.15, NA, 5.4, 3.59, 6.69, 5.3,
6.22, 4.4, 7.98, 6.1, 8.14, 7.6, 5.03, 6.32, 7.21, 6.88, 8.69,
10.57, NA, 6.6, 7.05, 5.41, NA, 3.61, 6.42, 6.1, 7.5, 6.06, 8.04,
6.07, 4.94, 8.1, 5.52, 8.33, 8.82, 9.2, 4.69, 5.14, 7.18, 4.6,
7.32, NA, 5.33, 5.9, 7.99, 10.5, 7.2, 5.3, NA, 8.4, 3.92, 8.61,
7.85, 7.28, 8.68, 3.79, 7.2, 6.19, 7.29, 8.29, 7.8, 7.33, 12.55,
9.88, 10.38, 5.3, 11.45, NA, 4.52, 5.5, 9.1, 7.59, 9.4, 7.7,
NA, 8.94, 9.74, 7.8, 8.95, 9.32, 7.12, 6.76, 5.75, 7, 9.45, 6.19,
7.84, 7.7, 8.6, 6.47, 7.6, 6.42, 12.07, 8.38, 8.58, 7.2, NA,
8.45, 8.76, 9.51, 11.91, 8.1, 5.58, 10.13, NA, 11.72, 9.22, NA,
7.92, 8.09, NA), water_depth = c(70, 45, 64, 76, 75, 91, 65,
84, 80, 55, 51, 97, 62, 65, 98, 98, 58, 83, 68, 60, 80, 92, 68,
95, 72, 101, 63, 80, 106, 103, 85, 49, 85, 72, 70, 90, 117, 95,
58, 53, 72, 106, 102, 85, 74, 70, 62, 81, 79, 96, 79, 90, 86,
95, 128, 101, 42, 70, 95, 100, 52, 60, 90, 52, 102, 90, 43, 64,
96, 62, 80, 110, 105, 90, 52, 83, 70, 91, 40, 110, 105, 59, 96,
56, 85, 102, 105, 87, 91, 103, 63, 84, 63, 62, 52, 115, 55, 83,
104, 33, 78, 43, 80, 100, 50, 120, 72, 30, 103, 98, 74, 95, 62,
62, 89, 57, 35, 53, 55, 85, 76, 45, 75, 79, 74, 65, 76, 50, 50,
95, 35, 100, 62, 76, 78, 83, 60, 60, 49, 76, 50, 64, 73, 64,
80, 64, 90, 55, 60, 57, 71, 60, 90, 67, 53, 67, 49, 61, 52, 60,
68, 68, 70, 75, 71, 57, 63, 70, 63, 60, 70, 39, 77, 52, 75, 62,
75, 38, 72, 66, 67, 62, 80, 80, 47, 81, 85, 49), sed_depth = c(51,
4, 52, 47, 36, 39, 25, 54, 18, 10, 25, 78, NA, 105, 60, 35, NA,
58, 27, 0, 15, 33, 6, 60, NA, 40, NA, 80, 34, 50, 33, NA, 39,
15, 50, 40, 4, 80, NA, 27, 73, 40, 66, 45, NA, NA, NA, 46, NA,
27, 50, 47, 34, 21, 7, 49, 7, 60, 28, 36, NA, NA, 30, NA, 15,
10, 73, NA, 5, NA, 25, NA, 15, 55, 4, 81, 25, 61, NA, 35, 25,
NA, 7, NA, 15, 63, 25, 73, 32, 27, NA, NA, 0, 3, 5, NA, 61, 52,
70, NA, 48, 100, 37, 9, NA, 10, NA, 75, 18, 18, NA, 75, NA, 33,
40, 35, 30, 100, NA, 65, 50, 90, 19, 61, 61, NA, 13, 35, NA,
94, NA, 57, 50, 26, 75, 27, NA, 24, 61, 9, 68, NA, 29, 43, NA,
30, 38, 90, 60, 2, 21, NA, 42, 55, 30, 48, 0, 69, NA, 50, NA,
NA, 35, 13, 74, 33, 43, 35, 26, 35, NA, NA, 56, NA, 30, NA, 45,
57, NA, 29, NA, NA, 35, 38, NA, 5, 15, NA), Month2 = structure(c(3L,
2L, 3L, 2L, 2L, 3L, 2L, 3L, 4L, 4L, 4L, 3L, 3L, 2L, 3L, 2L, 3L,
3L, 4L, 4L, 4L, 4L, 3L, 3L, 2L, 2L, 3L, 2L, 3L, 3L, 4L, 3L, 3L,
4L, 4L, 3L, 4L, 3L, 3L, 2L, 3L, 2L, 3L, 3L, 2L, 2L, 3L, 2L, 2L,
4L, 4L, 3L, 3L, 4L, 4L, 3L, 3L, 4L, 2L, 3L, 3L, 2L, 3L, 2L, 3L,
4L, 2L, 3L, 4L, 2L, 4L, 3L, 3L, 2L, 3L, 3L, 4L, 3L, 3L, 3L, 3L,
2L, 2L, 2L, 4L, 4L, 3L, 3L, 3L, 3L, 3L, 2L, 4L, 3L, 4L, 3L, 2L,
4L, 3L, 3L, 3L, 3L, 2L, 3L, 2L, 4L, 2L, 3L, 3L, 3L, 2L, 3L, 3L,
4L, 4L, 3L, 4L, 3L, 3L, 3L, 3L, 3L, 4L, 3L, 3L, 3L, 3L, 4L, 2L,
4L, 2L, 3L, 4L, 2L, 3L, 3L, 2L, 4L, 3L, 3L, 3L, 3L, 3L, 4L, 3L,
3L, 3L, 3L, 4L, 3L, 2L, 3L, 3L, 3L, 3L, 4L, 4L, 3L, 2L, 3L, 2L,
2L, 3L, 3L, 3L, 2L, 3L, 3L, 3L, 4L, 2L, 2L, 3L, 3L, 3L, 2L, 3L,
4L, 2L, 3L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L), levels = c("Jan",
"Feb", "Mar", "Apr"), class = "factor")), row.names = c(NA, -188L
), class = c("tbl_df", "tbl", "data.frame"))
Effect sizes:
effect <- by(dry_high_samplesize, dry_high_samplesize$CYR, function(z) wilcox_effsize(temp ~ Month, data = z,
mu=0,
alt="two.sided",
conf.int=T,
conf.level=0.8,
paired=F,
exact=T,
correct=T))
> effect
dry_high_samplesize$CYR: 2006
A tibble: 1 × 7
.y. group1 group2 effsize n1 n2 magnitude
- <chr> <chr> <chr> <dbl> <int> <int> <ord>
1 temp 2 3 0.705 24 23 large
dry_high_samplesize$CYR: 2015
A tibble: 1 × 7
.y. group1 group2 effsize n1 n2 magnitude
- <chr> <chr> <chr> <dbl> <int> <int> <ord>
1 temp 3 4 0.713 30 17 large
dry_high_samplesize$CYR: 2016
A tibble: 1 × 7
.y. group1 group2 effsize n1 n2 magnitude
- <chr> <chr> <chr> <dbl> <int> <int> <ord>
1 temp 3 4 0.407 24 23 moderate
dry_high_samplesize$CYR: 2018
A tibble: 1 × 7
.y. group1 group2 effsize n1 n2 magnitude
- <chr> <chr> <chr> <dbl> <int> <int> <ord>
1 temp 2 3 0.234 20 27 small

