The definition of covariance says that it is: $cov(X,Y)=E [(X- \overline{X})(Y- \overline{Y})]$
However, it seems that we can also calculate it without subtracting the mean of the second variable: $cov(X,Y)=E [(X- \overline{X})(Y)]$
Is this correct? My argument for discrete variables results from comparing respective sums:
I. Sum number 1: $$\sum[(X-\overline{X})\times (Y-\overline{Y})]=\sum(XY-\overline{Y}X-\overline{X}Y+\overline{X}\overline{Y})=\sum(XY)-\overline{Y}n\overline{X}-\overline{X}n\overline{Y}+n\overline{X}\overline{Y}=\sum(XY)-2n\overline{X}\overline{Y}+ n\overline{X}\overline{Y}=\sum(XY)- n\overline{X}\overline{Y}$$
II. Sum number 2: $$\sum[(X-\overline{X})\times Y]= \sum(XY)-\overline{X}n\overline{Y}$$
Conclusion: sum number 1 = sum number 2, so the covariance can be calculated either way.