I want to forecast the health expenditure of Russia as a share of GDP and I am using data points from 2000-2019. Following is my data:
2000 1.514
2001 1.612
2002 1.721
2003 1.714
2004 1.605
2005 1.52
2006 1.48
2007 1.489
2008 1.543
2009 1.947
2010 1.752
2011 1.64
2012 1.649
2013 1.77
2014 1.857
2015 2.047
2016 2.142
2017 2.17
2018 2.037
2019 2.051
Following are the R codes I have used.
# Load the forecasting package
library(fpp2)
Declare data as Time Series Data
Russia_ShareofGDP_TS <- ts(Russia_ShareofGDP [, 4],start = c(2000))
plot(Russia_ShareofGDP_TS, pch = 19)
Fit ARIMA model
fit_arima<- auto.arima(Russia_ShareofGDP_TS, seasonal=FALSE,stepwise=FALSE,approximation=FALSE)
print(summary(fit_arima))
checkresiduals(fit_arima)
Forecast
fcst <- forecast(fit_arima, h=16)
autoplot(fcst, xlab = "Time", ylab = "OOP Health Spending Share of GDP", main = "RUSSIAN FEDERATION", pch = 19, col = "blue")
print(summary(fcst))
The forecast values for the data are same for each year till 2035. Am I doing something wrong? Kindly help!
Following are my result;
Forecast method: ARIMA(0,1,0)
Model Information:
Series: Russia_ShareofGDP_TS
ARIMA(0,1,0)
sigma^2 = 0.01816: log likelihood = 11.12
AIC=-20.24 AICc=-20 BIC=-19.29
Error measures:
ME RMSE MAE MPE MAPE MASE ACF1
Training set 0.0269257 0.1313601 0.0950257 1.257031 5.255342 0.9507574 0.04825101
Forecasts:
Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
2020 2.051 1.878282 2.223718 1.7868506 2.315149
2021 2.051 1.806740 2.295260 1.6774363 2.424564
2022 2.051 1.751844 2.350156 1.5934798 2.508520
2023 2.051 1.705564 2.396436 1.5227012 2.579299
2024 2.051 1.664791 2.437209 1.4603440 2.641656
2025 2.051 1.627929 2.474071 1.4039688 2.698031
2026 2.051 1.594031 2.507969 1.3521264 2.749874
2027 2.051 1.562480 2.539520 1.3038727 2.798127
2028 2.051 1.532846 2.569154 1.2585518 2.843448
2029 2.051 1.504818 2.597182 1.2156863 2.886314
2030 2.051 1.478159 2.623841 1.1749156 2.927084
2031 2.051 1.452687 2.649313 1.1359597 2.966040
2032 2.051 1.428256 2.673744 1.0985958 3.003404
2033 2.051 1.404748 2.697252 1.0626435 3.039357
2034 2.051 1.382066 2.719934 1.0279538 3.074046
2035 2.051 1.360128 2.741872 0.9944024 3.107598
