I have a zero inflated count data, on which I have run a poisson and quasi poisson reg using glm().
The output from a poisson model is as follows:
Call:
glm(formula = sum_count ~ location * treatment, family = poisson,
data = dat)
Deviance Residuals:
Min 1Q Median 3Q Max
-32.297 -21.360 -12.476 5.448 80.361
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 5.75215 0.01455 395.31 <2e-16 ***
locationNorth -0.30685 0.02235 -13.73 <2e-16 ***
treatmentclosed -1.14865 0.03235 -35.51 <2e-16 ***
treatmentday -0.32222 0.02245 -14.35 <2e-16 ***
treatmentnight 0.34802 0.01901 18.31 <2e-16 ***
locationNorth:treatmentclosed -0.73419 0.06081 -12.07 <2e-16 ***
locationNorth:treatmentday 1.13369 0.03032 37.39 <2e-16 ***
locationNorth:treatmentnight -1.37528 0.03812 -36.08 <2e-16 ***
Signif. codes: 0 ‘*’ 0.001 ‘’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 67655 on 113 degrees of freedom
Residual deviance: 54990 on 106 degrees of freedom
AIC: 55474
Number of Fisher Scoring iterations: 7
The output from the quasipoisson model is as follows:
Call:
glm(formula = sum_count ~ location * treatment, family = quasipoisson,
data = dat)
Deviance Residuals:
Min 1Q Median 3Q Max
-32.297 -21.360 -12.476 5.448 80.361
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.7521 0.3753 15.327 <2e-16 ***
locationNorth -0.3068 0.5764 -0.532 0.596
treatmentclosed -1.1486 0.8343 -1.377 0.171
treatmentday -0.3222 0.5790 -0.557 0.579
treatmentnight 0.3480 0.4902 0.710 0.479
locationNorth:treatmentclosed -0.7342 1.5685 -0.468 0.641
locationNorth:treatmentday 1.1337 0.7821 1.450 0.150
locationNorth:treatmentnight -1.3753 0.9831 -1.399 0.165
Signif. codes: 0 ‘*’ 0.001 ‘’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for quasipoisson family taken to be 665.2146)
Null deviance: 67655 on 113 degrees of freedom
Residual deviance: 54990 on 106 degrees of freedom
AIC: NA
Number of Fisher Scoring iterations: 7
My question is: (given my rudimentary understanding of count models), why is the over dispersion parameter for both models the same?
glm1$deviance/glm1$df.residual # estimating the dispersion
[1] 518.7702
glm1.q$deviance/glm1.q$df.residual # estimating the dispersion
[1] 518.7702
Any insight is highly welcome. Thank you!