Here is some code that more closely mirrors the asymptotic functional in Phillips et al. (IER 2011). I'll confess that I quickly reverse-engineered some of the powers of $n$ to make the critical values match those in the paper, so this code should be used with care and surely deserves some more thinking on my part.
n <- 5000
reps <- 10000
r.0 <- 0.1
r <- seq(0.005, 1, 0.005)
sup.DF.distr <- function(n, r, r.0){
u <- rnorm(n)
W <- 1/sqrt(n)cumsum(u)
W.r <- sapply(r, function(s) W[1:(ns)])
W_mu.r <- lapply(1:length(r), function(s) W.r[[s]] - 1/(sqrt(n)r[s])sum(W.r[[length(r)]]))
numerator.sum.process <- cumsum(head(W_mu.r[[length(r)]], -1)u[2:n])
numerator.r <- numerator.sum.process[nr-1]
denominator <- sapply(1:length(r), function(s) sqrt((1/nsum(W_mu.r[[s]])^2)))
DFstats <- 1/sqrt(nr)numerator.r/denominator
sup.DFstats.r0 <- sqrt(n)max(DFstats[(r.0*length(r)):length(r)])
}
quantile(replicate(reps, sup.DF.distr(n, r, r.0)), probs=c(.9, .95, .96, .99))