Looking at https://en.wikipedia.org/wiki/Akaike_information_criterion I find the well known log likelihood $\ln\mathcal{L}(\mu,\sigma) \, = \, -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln\sigma^2 - \frac{1}{2\sigma^2}\sum_{i=1}^n (x_i-\mu)^2$ for assuming that the errors scatter with a normal distribution around the model (with $RSS=SSR=\sum_{i=1}^n (x_i-\mu)^2$).
If $AIC =\ln\mathcal{L} +2k$ why does How can I apply Akaike Information Criterion and calculate it for Linear Regression? and e.g. statsmodels https://github.com/statsmodels/statsmodels/blob/2eac8066b068a88f00a29f8ff728b04e58248375/statsmodels/regression/linear_model.py#L595 compute AIC using log likelihood function llf=-log(SSR)+... shouldn't it be llf=-SSR+...(without a log applied to SSR)?