I'm building an LSTM sequential Binary Classification Model, the data is highly imbalanced like say Fraud detection case.
After building an LSTM model on Sequential Vectorised data, I'm getting a very low recall of 0.005.
# build LSTM layers
model = Sequential()
model.add(LSTM (100, dropout=0.2, input_shape=(time_steps, features)))
model.add(Dense(50, activation='relu'))
model.add(Dense(25, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=[Recall()])
print (model.summary())
history=model.fit(train_X, train_Y, validation_data=(test_X, test_Y),
epochs=10,batch_size=64)
Please help me, with how to optimize the recall for this model.
Thank you