Suppose that $X_1, X_2, \dots, X_n$ is an iid sample from a categorial distribution with $k\in\mathbb N$ events. That is, the probability that $X$ is equal to some $x\in\{1,2,\dots,k\}$ is given by $$f_p(x) = \prod_{i=j}^kp_j^{\mathsf 1(x=j)},$$ where $\mathsf 1(\cdot)$ denotes the indicator function and $$p = \begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_k \end{bmatrix}.$$
The parameter $p$ can be estimated by Maximum Likelihood subject to the constraint $1_k \boldsymbol{\cdot} p = 1$. Here $1_k$ denotes a vector with $k$ ones and $\boldsymbol{\cdot}$ the usual inner product. Let $$n = \begin{bmatrix} n_1 \\ n_2 \\ \vdots \\ n_k \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n\mathsf 1(x=1) \\ \sum_{i=1}^n\mathsf 1(x=2) \\ \vdots \\ \sum_{i=1}^n\mathsf 1(x=k) \end{bmatrix}.$$
Then the objective function is given by $$ L(p) = n\boldsymbol{\cdot}\log(p) + \lambda_1(1_k\boldsymbol{\cdot}p - 1).$$ The log operation is understood component-wise.
It's easy to show that the MLE of $p$ is $$\hat p = (1_k\boldsymbol{\cdot} n)^{-1}n.$$
I now want to an additional linear restriction $Ap = \delta$ for some $A\in\mathbb R^{q\times k}$ with $\operatorname{rank}(A) = q$ and $\delta\in\mathbb R^q$. The objective function in this case is $$L(p) = n\boldsymbol{\cdot}\log(p) + \lambda_1(1_k\boldsymbol{\cdot}p - 1) + \lambda_2(Ap - \delta).$$ If $$\tilde A = \begin{bmatrix} 1' \\ A \end{bmatrix},\quad \tilde \delta = \begin{bmatrix} -1 \\ \delta\end{bmatrix},\quad\text{and}\quad \lambda = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix},$$ the objective function can be written as $$L(p) = n\boldsymbol{\cdot}\log(p) + \lambda\boldsymbol{\cdot}(\tilde Ap - \tilde\delta).$$
The objective function now looks like it's easy to handle. However, I don't know how to proceed and derive the MLE with the additional restriction. Is it even possible to find a closed-form expression for the solution of this problem?