Is it possible to split linear predictors contribution up when talking glm of non-normal distributions?
If: $$µ_i = g^{-1}(η_i)$$ and $$µ_i = g^{-1}(β_0 + β_1X_{i1} + β_2X_{i2} +···+β_kX_{ik})$$
Is it then possible to split $µ_i$ up based on predictors? For instance, is this valid? : $$µ^{intercept}_i + µ_i^{predictor\ 1}= g^{-1}(β_0)\ + g^{-1}(β_1X_{i1})$$