1

I have been measuring flux of CO2 in (mmol m-2 d-1) from two different rivers and I now want to do a statistical analysis using IBM SPSS but I'm not sure where to start. One lake is showing negative flux, because the lake has acted like a sink for the CO2.

I have made a histogram first see how the data looks like, as you can see in the figure I’ve added additional data with label. As mentioned above, the negative values are from one lake and the positive values are from another lake

The labels show: what lake I have studied; what time I started the measurement and when I stopped measuring; the column daytime (1) describes when the sun is up and nighttime (2) describes when the sun is down; T_air oC and T_H2O describes describe the temperature in water and air during the measurement and FCO2 is a calculated variable of CO2 flux from its ppm to units of mmol m-2 d-1.

What I want to accomplish with the statistical analysis is first to understand how I should think before I start to analyzing;

  • What leads to different values within each of the two lakes?
  • What lead to different values between the two lakes? and
  • What is the relationship between FCO2 and temperature?

Is there anyone who can come with some suggestion what statistically analysis I should use for each thing I want to accomplish? I have from somewhere I should use a one-way Anova but not sure where to start thinking.

Thank you for helping

Histogram

Lake & Initial sampling (date and time) & Final sampling (date and time) & Daytime (1) nighttime (2) & T\_air oC & T\_H2O oC & FCO2\_mmol m-2 d-1 \\
Victoria & 2022-03-16 18:35 & 2022-03-16 20:18 & 1 & 4.5   & 4.5   & -2.29507 \\
Victoria & 2022-03-16 20:33 & 2022-03-16 22:15 & 2 & 4.35  & 4.35  & -2.48989 \\
Victoria & 2022-03-16 22:35 & 2022-03-17 00:16 & 2 & 4.22  & 4.22  & -2.52834 \\
Victoria & 2022-03-17 00:35 & 2022-03-17 02:18 & 2 & 4.02  & 4.02  & -2.4524  \\
Victoria & 2022-03-17 02:34 & 2022-03-17 04:13 & 2 & 4.12  & 4.12  & -2.47989 \\
Victoria & 2022-03-17 04:38 & 2022-03-17 06:15 & 1 & 4.36  & 4.36  & -2.18617 \\
Victoria & 2022-03-17 06:34 & 2022-03-17 08:16 & 1 & 5.35  & 5.35  & -1.86178 \\
Victoria & 2022-03-17 08:35 & 2022-03-17 10:17 & 1 & 6.07  & 6.07  & -2.42144 \\
Victoria & 2022-03-17 10:34 & 2022-03-17 12:18 & 1 & 7.44  & 7.44  & -2.52941 \\
Victoria & 2022-03-17 12:34 & 2022-03-17 14:17 & 1 & 8.16  & 8.16  & -2.21627 \\
Victoria & 2022-03-17 14:33 & 2022-03-17 16:19 & 1 & 7.97  & 7.97  & -2.55553 \\
Victoria & 2022-03-17 16:39 & 2022-03-17 18:17 & 1 & 7.52  & 7.52  & -2.0844  \\
Victoria & 2022-03-17 18:34 & 2022-03-17 20:17 & 1 & 7.54  & 7.54  & -2.43122 \\
Victoria & 2022-03-17 20:34 & 2022-03-17 22:17 & 2 & 8.06  & 8.06  & -1.96291 \\
Victoria & 2022-03-17 22:35 & 2022-03-18 00:18 & 2 & 7.41  & 7.41  & -1.54653 \\
Victoria & 2022-03-18 00:38 & 2022-03-18 02:18 & 2 & 7.60  & 7.6   & -1.591   \\
Victoria & 2022-03-18 02:35 & 2022-03-18 04:17 & 2 & 7.42  & 7.42  & -1.99879 \\
Victoria & 2022-03-18 04:36 & 2022-03-18 06:16 & 1 & 7.02  & 7.02  & -1.44514 \\
Victoria & 2022-03-18 06:35 & 2022-03-18 08:18 & 1 & 8.12  & 8.12  & -1.82221 \\
Victoria & 2022-03-18 08:33 & 2022-03-18 10:17 & 1 & 8.97  & 8.97  & -2.30534 \\
Victoria & 2022-03-18 10:34 & 2022-03-18 12:18 & 1 & 11.63 & 11.63 & -1.49893 \\
Victoria & 2022-03-18 12:37 & 2022-03-18 14:17 & 1 & 10.75 & 10.75 & -2.20711 \\
Victoria & 2022-03-18 14:38 & 2022-03-18 16:18 & 1 & 11.57 & 11.57 & -1.80309 \\
Victoria & 2022-03-18 16:41 & 2022-03-18 18:17 & 1 & 8.66  & 8.66  & -1.67234 \\
Victoria & 2022-03-18 18:37 & 2022-03-18 20:15 & 1 & 6.18  & 6.18  & -1.3983  \\
Victoria & 2022-03-18 20:37 & 2022-03-18 22:17 & 2 & 5.02  & 5.02  & -1.32119 \\
Victoria & 2022-03-18 22:34 & 2022-03-19 00:17 & 2 & 4.50  & 4.5   & -1.45022 \\
Victoria & 2022-03-19 00:34 & 2022-03-19 02:17 & 2 & 4.74  & 4.74  & -1.49234 \\
Victoria & 2022-03-19 02:35 & 2022-03-19 04:18 & 2 & 4.75  & 4.75  & -1.16388 \\
Victoria & 2022-03-19 04:35 & 2022-03-19 06:18 & 1 & 4.34  & 4.34  & -0.87719 \\
Victoria & 2022-03-19 10:33 & 2022-03-19 12:17 & 1 & 13.33 & 13.33 & -1.04391 \\
Victoria & 2022-03-19 12:34 & 2022-03-19 14:18 & 1 & 11.86 & 11.86 & -1.15754 \\
Victoria & 2022-03-19 14:37 & 2022-03-19 16:18 & 1 & 14.32 & 14.32 & -1.3017  \\
Victoria & 2022-03-19 16:35 & 2022-03-19 18:18 & 1 & 7.77  & 7.77  & -1.41987 \\
Victoria & 2022-03-19 18:33 & 2022-03-19 20:18 & 1 & 5.49  & 5.49  & -1.20405 \\
Victoria & 2022-03-19 20:35 & 2022-03-19 22:16 & 2 & 4.92  & 4.92  & -1.29523 \\
Victoria & 2022-03-20 08:34 & 2022-03-20 10:13 & 1 & 13.10 & 13.1  & -2.09114 \\
Victoria & 2022-03-20 10:34 & 2022-03-20 12:16 & 1 & 12.37 & 12.37 & -1.80007 \\
Victoria & 2022-03-20 12:32 & 2022-03-20 14:18 & 1 & 12.81 & 12.81 & -1.55716 \\
Victoria & 2022-03-20 14:34 & 2022-03-20 16:17 & 1 & 15.58 & 15.58 & -1.86034 \\
Victoria & 2022-03-20 16:34 & 2022-03-20 18:17 & 1 & 9.39  & 9.39  & -1.90103 \\
Victoria & 2022-03-20 18:33 & 2022-03-20 20:18 & 1 & 5.44  & 5.44  & -1.53041 \\
Victoria & 2022-03-20 20:35 & 2022-03-20 22:14 & 2 & 4.67  & 4.67  & -1.79374 \\
Victoria & 2022-03-20 22:37 & 2022-03-21 00:17 & 2 & 4.48  & 4.48  & -1.01154 \\
Denveer  & 2022-03-29 21:55 & 2022-03-29 23:35 & 2 & 4.44  & 4.44  & 2.853022 \\
Denveer  & 2022-03-29 23:56 & 2022-03-30 01:35 & 2 & 3.51  & 3.51  & 2.15667  \\
Denveer  & 2022-03-30 01:56 & 2022-03-30 03:34 & 2 & 2.38  & 2.38  & 2.231913 \\
Denveer  & 2022-03-30 03:54 & 2022-03-30 05:35 & 2 & 2.16  & 2.16  & 1.759635 \\
Denveer  & 2022-03-30 05:53 & 2022-03-30 07:35 & 1 & 3.7   & 3.7   & 1.001419 \\
Denveer  & 2022-03-30 07:56 & 2022-03-30 09:35 & 1 & 7.8   & 7.8   & 0.960555 \\
Denveer  & 2022-03-30 09:53 & 2022-03-30 11:35 & 1 & 9.98  & 9.98  & 1.991259 \\
Denveer  & 2022-03-30 11:56 & 2022-03-30 13:34 & 1 & 10.25 & 10.25 & 1.517868 \\
Denveer  & 2022-03-30 13:51 & 2022-03-30 15:34 & 1 & 10.2  & 10.2  & 1.821623 \\
Denveer  & 2022-03-30 15:53 & 2022-03-30 17:35 & 1 & 9.63  & 9.63  & 1.741887 \\
Denveer  & 2022-03-30 17:54 & 2022-03-30 19:35 & 1 & 6.38  & 6.38  & 2.141064 \\
Denveer  & 2022-03-30 19:55 & 2022-03-30 21:35 & 2 & 4.96  & 4.96  & 2.685757 \\
Denveer  & 2022-03-30 21:56 & 2022-03-30 23:35 & 2 & 4     & 4     & 2.923715 \\
Denveer  & 2022-03-30 23:52 & 2022-03-31 01:11 & 2 & 3.54  & 3.54  & 3.316899 \\
Denveer  & 2022-03-31 01:52 & 2022-03-31 03:34 & 2 & 2.99  & 2.99  & 1.681422 \\
Denveer  & 2022-03-31 07:55 & 2022-03-31 09:35 & 1 & 10.4  & 10.4  & 1.361125 \\
Denveer  & 2022-03-31 13:58 & 2022-03-31 15:34 & 1 & 12.34 & 12.34 & 0.734101 \\
Denveer  & 2022-03-31 15:55 & 2022-03-31 17:35 & 1 & 8.69  & 8.69  & 0.947828 \\
Denveer  & 2022-03-31 17:54 & 2022-03-31 19:35 & 1 & 6.6   & 6.6   & 0.512018 \\
Denveer  & 2022-03-31 19:53 & 2022-03-31 21:35 & 2 & 4.82  & 4.82  & 1.261292 \\
Denveer  & 2022-04-01 06:04 & 2022-04-01 07:35 & 1 & 4.9   & 4.9   & 1.77807  \\
Denveer  & 2022-04-01 09:54 & 2022-04-01 11:34 & 1 & 7.73  & 7.73  & 1.738892 \\
Denveer  & 2022-04-01 12:02 & 2022-04-01 13:22 & 1 & 9.9   & 9.9   & 1.109685 \\
Denveer  & 2022-04-01 13:51 & 2022-04-01 15:35 & 1 & 9.06  & 9.06  & 1.232822 \\
Denveer  & 2022-04-01 15:56 & 2022-04-01 17:36 & 1 & 8.57  & 8.57  & 0.857767 \\
Denveer  & 2022-04-01 17:56 & 2022-04-01 19:34 & 1 & 4.62  & 4.62  & 1.44003  \\
Denveer  & 2022-04-01 19:53 & 2022-04-01 21:36 & 2 & 2.78  & 2.78  & 2.121573 \\
Denveer  & 2022-04-01 22:04 & 2022-04-01 23:24 & 2 & 2.9   & 2.9   & 2.611131 \\
Denveer  & 2022-04-02 00:01 & 2022-04-02 01:36 & 2 & 1.99  & 1.99  & 1.989111 \\
Denveer  & 2022-04-02 01:56 & 2022-04-02 03:36 & 2 & 1.6   & 1.6   & 1.889324 \\
Denveer  & 2022-04-02 03:56 & 2022-04-02 05:35 & 2 & 1.51  & 1.51  & 1.239421 \\
Denveer  & 2022-04-02 05:54 & 2022-04-02 07:34 & 1 & 2.73  & 2.73  & 0.908215 \\
Denveer  & 2022-04-02 07:58 & 2022-04-02 08:48 & 1 & 4.94  & 4.94  & 0.72762  \\
Denveer  & 2022-04-02 10:04 & 2022-04-02 11:26 & 1 & 11.35 & 11.35 & 0.634685 \\
Denveer  & 2022-04-02 13:59 & 2022-04-02 15:37 & 1 & 9.45  & 9.45  & 0.851654 \\
Denveer  & 2022-04-02 15:54 & 2022-04-02 17:38 & 1 & 8.7   & 8.7   & 1.322688 \\
Denveer  & 2022-04-02 17:58 & 2022-04-02 19:38 & 1 & 6.64  & 6.64  & 1.169257 \\
Denveer  & 2022-04-02 19:54 & 2022-04-02 21:39 & 2 & 5.25  & 5.25  & 1.483866 \\
Denveer  & 2022-04-02 22:00 & 2022-04-02 23:40 & 2 & 4.87  & 4.87  & 1.363993 \\
Denveer  & 2022-04-03 00:04 & 2022-04-03 01:36 & 2 & 4.78  & 4.78  & 1.777732 \\
Denveer  & 2022-04-03 02:00 & 2022-04-03 03:40 & 2 & 4.8   & 4.8   & 1.488471 \\
Denveer  & 2022-04-03 03:56 & 2022-04-03 05:40 & 2 & 4.54  & 4.54  & 0.842322 \\
Denveer  & 2022-04-03 05:57 & 2022-04-03 07:41 & 1 & 5.12  & 5.12  & 1.25267  \\
Denveer  & 2022-04-03 07:58 & 2022-04-03 09:40 & 1 & 7.82  & 7.82  & 1.638629 \\
Denveer  & 2022-04-03 10:02 & 2022-04-03 11:42 & 1 & 10.2  & 10.2  & 1.543532 \\
Denveer  & 2022-04-03 11:59 & 2022-04-03 13:42 & 1 & 11.4  & 11.4  & 1.734148 \\
Denveer  & 2022-04-03 14:02 & 2022-04-03 15:42 & 1 & 10.1  & 10.1  & 2.221091 \\
Denveer  & 2022-04-03 16:01 & 2022-04-03 17:20 & 1 & 9.2   & 9.2   & 2.092675 \\
Denveer  & 2022-04-03 19:59 & 2022-04-03 21:43 & 2 & 6.69  & 6.69  & 2.461853 \\
Denveer  & 2022-04-03 22:03 & 2022-04-03 23:38 & 2 & 6.34  & 6.34  & 3.361063 \\
Denveer  & 2022-04-04 00:01 & 2022-04-04 01:43 & 2 & 6.36  & 6.36  & 4.282346 \\
Denveer  & 2022-04-04 02:02 & 2022-04-04 03:45 & 2 & 7.02  & 7.02  & 5.178646 \\
Denveer  & 2022-04-04 04:08 & 2022-04-04 05:45 & 1 & 7     & 7     & 1.177135 \\
Denveer  & 2022-04-04 06:08 & 2022-04-04 07:44 & 1 & 6.58  & 6.58  & 1.053295 \\
Denveer  & 2022-04-04 08:07 & 2022-04-04 09:24 & 1 & 6.74  & 6.74  & 1.20853
mkt
  • 18,245
  • 11
  • 73
  • 172
  • 2
    Could you explain how a gas measurement could be negative? What parameter are you analyzing? What is your second chart showing? (Without labels or an explanation, it's essentially meaningless or possibly even confuses the matter.) Regardless, if all the values from one river are always less than values in the other river, you don't need to conduct a statistical test: the different is obvious. – whuber May 01 '22 at 15:09
  • Im sorry for late reply.

    The negative gas measurement means that is has a negative flux. The river is acting like a sink for the gas. The parameter that im looking at is ppm. A friend made the second chart for me and are using the same data as the one in the first Chart.

    I know its obvious as one is only having plus values and the other have minus values but, in my case it has to be proven statistically.

    I hope I made myself more clear for the help that im looking for

    – Ed Danielsen May 01 '22 at 19:30
  • 1
    Without labels nothing is obvious about either chart. Your data listing seems to have date, time, depth, and C02. What role does each of these play in your proposed analysis. What is the relevance of depth? // To the extent that your question is restricted to specifics of particular software (Excel, SPSS), it may be off topic here. Please focus on why the study was done and what you hope to find out. – BruceET May 01 '22 at 21:37
  • Thank you for reply, BruceET,

    For the moment, column lake, FCO2 and Daytime (1) Nighttime (2) are the important.
    I added the whole table just so it was done. To answer your question about what the the relevance for depth is that I may want to check if there is a different between just the depth on the lake, where the monitor where places, of both places.

    – Ed Danielsen May 01 '22 at 22:10
  • First, I want to check the variability within each lake. I made this extra column ( daytime (1), nighttime (2)) in Excel before I imported them into SPSS as I thought it would make it easier to separate them.
  • The second thing I want to find out is the variability between each lake.
  • – Ed Danielsen May 01 '22 at 22:10
  • The last column is FCO2 calculated variable of CO2 from ppm to mmol m-2 d-1.

    As mention above the negative data is from one lake and the positive data is from another lake

    – Ed Danielsen May 03 '22 at 17:20
  • The purpose is to have the same temperatur in both and not whats important. And im aware that these have different date and one of the interpretation I will do later on. My focus and question here is on the statistical side and not the philosophical side. But thank you for your comment – Ed Danielsen May 03 '22 at 18:20
  • @bruceET, would you say it more clear now? – Ed Danielsen May 04 '22 at 11:29
  • 1
    It looks like your third question, "What is the relationship between FCO2 and temperature," can be studied with these data. Start by looking at scatterplots of the (Temperature, FCO2) pairs, one for each lake. What the relationship might be between this question and "variability between each lake" is not evident, though. This isn't some extraneous matter of "philosophy:" it's crucial to understanding what you're trying to do and deciding what statistical procedures might be useful and make sense. – whuber May 04 '22 at 22:19
  • 1
    Thank you @whuber – Ed Danielsen May 05 '22 at 11:38