import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
from torch.nn import functional as F
import numpy as np
import matplotlib.pyplot as plt
import datetime
import os
import pandas as pd
from sklearn.preprocessing import StandardScaler
# VAE model
class VAE(nn.Module):
def __init__(self, image_size, hidden_size_1, hidden_size_2, latent_size):
super(VAE, self).__init__()
self.fc1 = nn.Linear(image_size, hidden_size_1)
self.fc2 = nn.Linear(hidden_size_1, hidden_size_2)
self.fc31 = nn.Linear(hidden_size_2, latent_size)
self.fc32 = nn.Linear(hidden_size_2, latent_size)
self.fc4 = nn.Linear(latent_size, hidden_size_2)
self.fc5 = nn.Linear(hidden_size_2, hidden_size_1)
self.fc6 = nn.Linear(hidden_size_1, image_size)
def encode(self, x):
h1 = F.relu(self.fc1(x))
h2 = F.relu(self.fc2(h1))
return self.fc31(h2), self.fc32(h2)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + std * eps
def decode(self, z):
h3 = F.relu(self.fc4(z))
h4 = F.relu(self.fc5(h3))
return torch.sigmoid(self.fc6(h4))
def forward(self, x):
mu, logvar = self.encode(x)
z = self.reparameterize(mu, logvar)
return self.decode(z), mu, logvar
class TensorDataset:
def __init__(self, data, label, x_dtype = torch.float32, y_dtype = torch.float32):
self.data = data
self.label = label
self.x_dtype = x_dtype
self.y_dtype = y_dtype
self.convert_to_Tensor()
def __getitem__(self, index):
data = self.data[index]
label = self.label[index]
return data, label
def __len__(self):
return len(self.data)
def convert_to_Tensor(self):
self.data = torch.tensor(self.data, dtype=self.x_dtype)
self.label = torch.tensor(self.label, dtype=self.y_dtype)
def loss_function(recon_x, x, mu, logvar):
BCE = F.binary_cross_entropy(recon_x, x, reduction = 'sum')
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return BCE + KLD
def gen_latent(normal_array):
normal_dataset = TensorDataset(normal_array, normal_array)
normal_dataloader = DataLoader(normal_dataset,
batch_size=len(normal_dataset),
shuffle=False)
normal_iter = iter(normal_dataloader)
normal_data, _ = next(normal_iter)
return normal_data
if __name__=="__main__":
# Parameters
EPOCHS = 50
BATCH_SIZE = 200
# Cuda check
USE_CUDA = torch.cuda.is_available()
DEVICE = torch.device("cuda" if USE_CUDA else "cpu")
print("사용하는 Device : ", DEVICE)
# Data
drop_cols = ['site', 'sid', 'ldate', 'leaktype']
normal_df = pd.read_csv('data/5.정상음(normal-training).csv').drop(drop_cols, axis=1)
abnormal_out_df = pd.read_csv('data/1.옥외누수(out-training).csv').drop(drop_cols, axis=1)
abnormal_in_df = pd.read_csv('data/2.옥내누수(in-training).csv').drop(drop_cols, axis=1)
all_array = pd.concat([normal_df, abnormal_out_df, abnormal_in_df], axis=0).values
scaler = StandardScaler()
all_array = scaler.fit_transform(all_array)
# DataLoader
dataset = TensorDataset(all_array, all_array)
dataloader = DataLoader(dataset,
batch_size=128,
shuffle=True)
# About mode
VAE_model = VAE(535, 256, 32, 2).to(DEVICE)
optimizer = optim.Adam(VAE_model.parameters(), lr=0.001)
# Train
train_losses = []
for epoch in range(EPOCHS):
VAE_model.train()
train_loss = 0
for i, (data, _) in enumerate(dataloader):
# zero grad
optimizer.zero_grad()
# apply device to data
data = data.to(DEVICE)
# calculate
recon_batch, mu, logvar = VAE_model(data)
# cal loss
loss = loss_function(recon_batch, data, mu, logvar)
# backward
loss.backward()
train_loss += loss.item()
# step
optimizer.step()
train_losses.append(train_loss)
print("======> Epoch: {} Average loss: {:.4f}".format(
epoch, train_loss / len(dataloader.dataset)
))
#
normal_array = pd.read_csv('data/5.정상음(normal-training).csv').drop(drop_cols, axis=1).values
abnormal_out_array = pd.read_csv('data/1.옥외누수(out-training).csv').drop(drop_cols, axis=1).values
abnormal_in_array = pd.read_csv('data/2.옥내누수(in-training).csv').drop(drop_cols, axis=1).values
#
normal_data = gen_latent(normal_array)
abnormal_out_data = gen_latent(abnormal_out_array)
abnormal_in_data = gen_latent(abnormal_in_array)
#
def return_z_vae(normal_data):
a, b = VAE_model.encode(normal_data)
z = VAE_model.reparameterize(a, b)
return z.detach().numpy()
z_normal = return_z_vae(normal_data)
z_abnormal_out = return_z_vae(abnormal_out_data)
z_abnormal_in = return_z_vae(abnormal_in_data)
# Plot
plt.scatter(z_normal[:, 0], z_normal[:, 1], color='blue', s=1, label='normal')
plt.scatter(z_abnormal_out[:, 0], z_abnormal_out[:, 1], color='red', s=1, label='abnormal_out')
plt.scatter(z_abnormal_in[:, 0], z_abnormal_in[:, 1], color='green', s=1, label='abnormal_in')
plt.legend()
This code is to encode(similar to PCA) the data with 535 columns with VAE model. I don't know the problem with this code. The average loss is too big, and also increasing.

My data is FFT-transformed water pipeline signal data. It has about 500 columns of Hz and leaktype(out-building leak, in-building leak, normal signal data - out, in, normal).
(I dropped the site, sid, ldate, and leaktype for feature data set)
