This question will seem very beginner in this forum, but I'm indeed a beginner. I am attempting to understand method of least square for regression. So, likelihood of parameter is defined as $$\mathcal L(\vec\theta)\stackrel{\text{def}}=\prod_{i=1}^mp_Y(\vec y^{(i)}|\vec x^{(i)};\vec\theta)$$
It seems like the squared cost function $\mathcal J_\text{sq}(\vec\theta)$ is derived from $\mathcal L(\vec\theta)$ in the following steps: $$\begin{align}\ln\mathcal L(\vec\theta)&=\ln\prod_{i=1}^mp_Y(\vec y^{(i)}|\vec x^{(i)};\vec\theta)\\&=\ln\prod_{i=1}^m\frac1{\sigma\sqrt{2\pi}}\exp(-\frac12(\frac{\vec y^{(i)}-\hat y_\theta^{(i)}}{\sigma})^2)\\&=\ln\frac1{\sigma\sqrt{2\pi}}-\frac1{2\sigma^2}\sum_{i=1}^m(\vec y^{(i)}-\hat y_\theta^{(i)})^2\end{align}$$$$\begin{align}&\because f(\cdot)=-\frac{\sigma^2}m((\cdot)-\ln\frac{1}{\sigma\sqrt{2\pi}})\text{ is decreasing. }\\&\therefore\text{As }\mathcal J_\text{sq}(\vec\theta)=\frac1{2m}\sum_{i=1}^m(\vec y^{(i)}-\hat y_\theta^{(i)})^2\text{ decreases, }\mathcal L(\vec\theta)\text{ increases. }\end{align}$$ I understand every line in the derivation except the second line. Line 2 implies that $$p_Y(\vec y^{(i)}|\vec x^{(i)};\vec\theta)=\frac1{\sigma\sqrt{2\pi}}\exp(-\frac12(\frac{\vec y^{(i)}-\hat y_\theta^{(i)}}{\sigma})^2)\tag{*}$$ because of normality assumption: $$\vec y^{(i)}|\vec x^{(i)};\vec\theta\sim\mathcal N(\hat y_\theta^{(i)},\sigma^2)$$ In (*), LHS is probability of event "$Y=\vec y^{(i)}$ given $X=\vec x^{(i)}$" parametrized by $\vec\theta$, while RHS is the probability density function (PDF) of $\vec y^{(i)}|\vec x^{(i)};\vec\theta$. LHS is a probability of continuous random variable $Y$ conditioned on $X$ parametrized by $\vec\theta$.
My confusion is: Generally, given continuous random variable Y, $$p[Y≤y]=\int_0^yf_Y(y)dy$$
Isn't $Y$ continuous? How do we even find the probability of event "$Y=\vec y^{(i)}$ given $X=\vec x^{(i)}$" parametrized by $\vec\theta$? Why isn't RHS of (*) an integral?