In bayesian linear regression for example, we may specify a model as: $$y_i \sim N(\beta_0 + \beta_1 x_i, \epsilon^2) \\\\ \beta_0 \sim N(0, \tau_0^2) \\\\ \beta_1 \sim N(0, \tau_1^2) \\\\ \epsilon \sim N(0, \sigma^2) $$
The posterior can be constructed as $$ P(\beta_0, \beta_1, \epsilon|y) = \frac{P(y|\beta_0, \beta_1, \epsilon)\cdot P(\beta_0)\cdot P(\beta_1)\cdot P(\epsilon)}{P(y)} $$
My question is: is it possible to partially specify prior, e.g. specify prior distribution for $\beta_1$ only, but not $\beta_0$?
$$y_i \sim N(\beta_0 + \beta_1 x_i, \epsilon^2) \\\\ \beta_1 \sim N(0, \tau_1^2) \\\\ \epsilon \sim N(0, \sigma^2) $$
I guess the posterior will be something like: $$ P(\beta_1, \epsilon|y) = \frac{P(y|\beta_1, \epsilon)\cdot P(\beta_1)\cdot P(\epsilon)}{P(y)} $$
How do I interpret this posterior? Does this setting makes $\beta_0$ behave like a frequentist term (fixed but unknown)? How does this model relates to Ridge regression, where we penalize slope but not intercept?