Let $X_{1},\ldots {, X_{n}}$ be iid random variables with $X_{1} ∼ N(µ,\sigma ^{2}).$Let $\bar{X}= \sum_{i=1}^{n} \frac{X_{i}}{n}$, $R=max_{1\le i \le n} \{X_{i}\}$-$min_{1\le i \le n}\{X_{i}\}$.Show that $\bar{X} $and $ R$ are independently distributed.
First Method:- I do this problem firstly assuming that $\sigma ^{2}$ is fixed constant. So, by taking $\sigma ^{2} = \sigma^{2}_{0}$(fixed constant) $R=max_{1\le i \le n} \{X_{i}\}$-$min_{1\le i \le n}\{X_{i}\}$$=X_{(n)}-X_{(1)}$ $=(X_{(n)}- \mu) -(X_{(1)}- \mu)$= $max_{1 \le i \le n}\{X_{i}-\mu\}-min_{1\le i \le n}\{X_{1}-\mu\}$. Now, By$ X_{i}-\mu\stackrel{iid}{\sim} N(0,\sigma^{2}_{0}) $ $\forall i=1(1)n. $ So, We see that the distribution of $max_{1 \le i \le n}\{X_{i}-\mu\}-min_{1\le i \le n}\{X_{1}-\mu\} $is independent of parameter $\mu .$So, $R=max_{1\le i \le n} \{X_{i}\}$-$min_{1\le i \le n}\{X_{i}\}$$=X_{(n)}-X_{(1)}$ is an ancillary statistics. Also,Sample mean $\bar{X}$ is Complete sufficient statistic for $\mu.$ by.So, by Basu's theorem Sample mean , $ \bar{X}$ and Sample Range, $R=max_{1\le i \le n} \{X_{i}\}$-$min_{1\le i \le n}\{X_{i}\}$ are independently distributed.
Second Method:- Secondly, For unknown $\sigma$ , I assume Without Loss Of Generality, Let $X_{1} \le X_{2}\le X_{3}\ldots{\le X_{n}}.$ So $Covariance(\bar{X}, X_{(n)}-X_{(1)})=Covariance(\bar{X},X_{n}-X_{1})=0 $,as $X_{1},\ldots{,X_{n}}$ are iid.
But I am not sure that whether these methods are valid or not for this problem. If possible, Please give another proof.