If $X_1,\dots, X_n$ iid samples from CDF $F(x)$ and assume that $F$ is first order differentiable at $\xi_p$ with $f(\xi_p)>0$. Let $F_n$ be the empirical CDF of $F(x)$. Then $\hat{\xi}_p=F^{-1}_n(p)$ is the sample p-th quantile. Ghosh (1971) obtained a weaker version of Bahadur’s (1966) representation: $$ \hat{\xi}_p-\xi_p=\frac{p-F_n(\xi_p)}{f(\xi_p)}+o_p(n^{-1/2}). $$
I try to prove this result as follows.
Note that $F(\xi_p)=p$ and $$ \{\sqrt{n}(\hat{\xi}_p-\xi_p)\le t\}=\{p\le F_n(\xi_p+\frac{t}{\sqrt{n}})\}=\{ \frac{F(\xi_p+\frac{t}{\sqrt{n}})-F_n(\xi_p+\frac{t}{\sqrt{n}})}{f(\xi_p)}\le \frac{F(\xi_p+\frac{t}{\sqrt{n}})-F(\xi_p)}{f(\xi_p)} \} \, (*) $$ where $$ F(\xi_p+\frac{t}{\sqrt{n}})-F(\xi_p)=f(\xi_p)(\frac{t}{\sqrt{n}})+o(n^{-1/2}) $$ then the RHS on (*) $$\sqrt{n}\times \frac{F(\xi_p+\frac{t}{\sqrt{n}})-F(\xi_p)}{f(\xi_p)}\to t$$
Also, the LHS on (*) is $$ \sqrt{n}\times\left(\frac{F(\xi_p+\frac{t}{\sqrt{n}})-F_n(\xi_p+\frac{t}{\sqrt{n}})}{f(\xi_p)}-\frac{F(\xi_p)-F_n(\xi_p)}{f(\xi_p)}\right)\to 0 $$ in probability.
There is an asymptotic distribution of $\sqrt{n}\frac{F(\xi_p)-F_n(\xi_p)}{f(\xi_p)}$ to a Normal distribution from CLT.
But how to prove that
$$ \sqrt{n}\left((\hat{\xi}_p-\xi_p)-\frac{p-F_n(\xi_p)}{f(\xi_p)}\right)=o_p(1)? $$