1

What does the r-squared value indicate in the lm() function in r.

How to interprete it with the coefficients and p value. Following is an example of the output i got for summary of linear model I build for Auto data

Call:
lm(formula = mpg ~ ., data = data)

Residuals: Min 1Q Median 3Q Max -9.5903 -2.1565 -0.1169 1.8690 13.0604

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) -17.218435 4.644294 -3.707 0.00024 *** cylinders -0.493376 0.323282 -1.526 0.12780
displacement 0.019896 0.007515 2.647 0.00844 ** horsepower -0.016951 0.013787 -1.230 0.21963
weight -0.006474 0.000652 -9.929 < 2e-16 *** acceleration 0.080576 0.098845 0.815 0.41548
year 0.750773 0.050973 14.729 < 2e-16 *** origin 1.426141 0.278136 5.127 4.67e-07 ***


Signif. codes: 0 ‘*’ 0.001 ‘’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.328 on 384 degrees of freedom Multiple R-squared: 0.8215, Adjusted R-squared: 0.8182 F-statistic: 252.4 on 7 and 384 DF, p-value: < 2.2e-16

1 Answers1

0

If the p value is less than 0.05, it means that the intercept has a significant effect.

cylinders = -0.493376 means every 1 unit change for cylinders is equivalent to -0.493376 change in mpg values.

Residual standard error: 3.328 on 384 degrees of freedom Residual values mean it can play around +- 3.328.

Pr(>|t|) cylinders = 0.12780 indicates the significance of the coefficients, while p-value: < 2.2e-16 indicates the significance of the model.

Adjusted R-squared: 0.8182 Indicates the significance of the model at the 95% confidence level.

Esad
  • 24