Assume $(X,Y) \sim \mathcal{N}_{2}(\mu, \Sigma)$ is a bivariate normal random vector. Let $Z = \max(0,X)$. I am now looking for the moments of $Z$ given that $Y<0$, in particular for $$\mathbb{E}[Z|Y<0] \text{ and } \mathbb{V}[Z|Y<0]$$
I know that $(X|Y=y) \sim \mathcal{N}\Big(\mu_1 + \rho\frac{\sigma_1}{\sigma_2}(y-\mu_2), (1- \rho^2)\sigma_1^2\Big)$, but how to proceed from this?