Imagine we have a biased coin that generates heads with unknown probability $\theta$ where $\theta$ is drawn from a beta distribution with known parameters $(\alpha, \beta)$. Next imagine that we flip the coin some number of times and we get $m$ heads and $n$ tails. I'd like to compute the quantity $p(m,n|\alpha,\beta)$.
What I have so far is $$ \begin{align} p(m,n|\theta) &= \begin{pmatrix}m+n\\n\end{pmatrix} \theta^m (1-\theta)^n \\ &\\ p(\theta|\alpha,\beta) &= \frac{\theta^{\alpha-1}(1-\theta)^{\beta-1}}{B(\alpha,\beta)} \\ &\\ p(m,n|\alpha,\beta) &= \int_0^1 p(m,n|\theta) \, p(\theta|\alpha,\beta)\,d\theta \\ &= \int_0^1 \begin{pmatrix}m+n\\n\end{pmatrix} \theta^m (1-\theta)^n \frac{\theta^{\alpha-1}(1-\theta)^{\beta-1}}{B(\alpha,\beta)} \, d\theta\\ &= \begin{pmatrix}m+n\\n\end{pmatrix}\bigl(B(\alpha,\beta)\bigr)^{-1} \int_0^1 \theta^{m+\alpha-1}(1-\theta)^{n+\beta-1}\,d\theta \\ &= \begin{pmatrix}m+n\\n\end{pmatrix} \frac{B(m+\alpha, n+\beta)}{B(\alpha,\beta)}. \end{align} $$
The final expression is pretty nice, but I'm wondering if it can be simplified even further. For instance, is it equivalent to a binomial distribution with some parameter $\theta'$?