folks. I try to get the standard errors of coefficients manually from probit regression analysis in R. These are 0.69012 and 0.03565 from the following R program.
> binary_data
id X1 Y
1 1 14 0
2 2 29 0
3 3 6 0
4 4 25 1
5 5 18 1
6 6 4 0
7 7 18 0
8 8 12 0
9 9 22 1
10 10 6 0
11 11 30 1
12 12 11 0
13 13 30 1
14 14 5 0
15 15 20 1
16 16 13 0
17 17 9 0
18 18 32 1
19 19 24 0
20 20 13 1
21 21 19 0
22 22 4 0
23 23 28 1
24 24 22 1
25 25 8 1
> probit_output <- glm(Y ~ X1, family=binomial(link="probit"), data=binary_data)
> summary(probit_output)
Call:
glm(formula = Y ~ X1, family = binomial(link = "probit"), data = binary_data)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.8959 -0.7579 -0.3907 0.8101 1.9691
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.83787 0.69012 -2.663 0.00774 **
X1 0.09686 0.03565 2.717 0.00659 **
confint(probit_output)what you are looking for? Doing it manually is complicated, because it is based n the asymptotic $\chi^2$ distribution of likelihood-ratios. You can check the implementation in R withgetFromNameSpace("confint.hlm", "MASS")andgetFromNameSpace("profile.hlm", "MASS"). – cdalitz Dec 14 '21 at 06:57