I have different predictors for survival data. How can I compare which predictor set would act as the better set? In other words, how can I compare "albumin" vs "sex+age" below?
I am aware of R's anova() for cox models, and asking for basically different models which are not "nested". I think this two posts are related but I cant wholly understand them.
How to interpret and compare models in Cox regression?
library(survival)
data(pbc)
pbc <- within(pbc, {
event <- as.numeric(status %in% c(1,2))# transplant(1) and death(2) are considered events n marked 1
Surv <- Surv(time, event) # Create a survival vector
} )
coxph.age.sex <- coxph(Surv ~ age + sex, data = pbc)
summary( coxph.age.sex)
#Call:
#coxph(formula = Surv ~ age + sex, data = pbc)
n= 418, number of events= 186
coef exp(coef) se(coef) z Pr(>|z|)
#age 0.022097 1.022343 0.007271 3.039 0.00237 **
#sexf -0.299952 0.740854 0.209753 -1.430 0.15271
#---
#Signif. codes: 0 ‘*’ 0.001 ‘’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
exp(coef) exp(-coef) lower .95 upper .95
#age 1.0223 0.9781 1.0079 1.037
#sexf 0.7409 1.3498 0.4911 1.118
#Concordance= 0.569 (se = 0.022 )
#Likelihood ratio test= 11.98 on 2 df, p=0.003
#Wald test = 12.24 on 2 df, p=0.002
#Score (logrank) test = 12.29 on 2 df, p=0.002
coxph.albumin <- coxph(Surv ~ albumin, data = pbc)
summary( coxph.albumin)
#Call:
#coxph(formula = Surv ~ albumin, data = pbc)
n= 418, number of events= 186
coef exp(coef) se(coef) z Pr(>|z|)
albumin -1.4695 0.2300 0.1714 -8.574 <2e-16 ***
---
Signif. codes: 0 ‘*’ 0.001 ‘’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
exp(coef) exp(-coef) lower .95 upper .95
#albumin 0.23 4.347 0.1644 0.3219
#Concordance= 0.688 (se = 0.021 )
#Likelihood ratio test= 66.6 on 1 df, p=3e-16
#Wald test = 73.51 on 1 df, p=<2e-16
#Score (logrank) test = 72.38 on 1 df, p=<2e-16
Thank you in advance.