I am running a logistic regression model where the outcome variable is Neurologic Complications, and there are various factors who's impact I am examining. One of the factors (HTN_new1), a categorical variable, has a strangely high standard error value, and is throwing off subsequent confidence interval and OR calculations. What could be the cause of this inflated value and how can I go about fixing it? Note, I have already checked the original excel model & R dataframe for entry errors and could not find anything that stood out.
Input:
NeuroLogit2 <- glm(`Neurologic Complication?` ~ stroke_comorbid + HTN_new +
`anesthesia type`+`Over 75yo?` + Gender_new + Embol_Collateralart +
carotid.subclavian + `Spinal drain?`, data=Tevar.new, family=binomial)
> summary(NeuroLogit2)
Output:
Call:
glm(formula = `Neurologic Complication?` ~ stroke_comorbid +
HTN_new + `anesthesia type` + `Over 75yo?` + Gender_new +
Embol_Collateralart + carotid.subclavian + `Spinal drain?`,
family = binomial, data = Tevar.new)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.09673 -0.37157 -0.27390 -0.00009 2.87970
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -20.90519 1153.29897 -0.018 0.9855
stroke_comorbid1 1.40348 0.57747 2.430 0.0151 *
HTN_new1 16.59862 1153.29876 0.014 0.9885
`anesthesia type`1 1.49715 0.77617 1.929 0.0537 .
`Over 75yo?`1 0.17094 0.51136 0.334 0.7382
Gender_new1 0.00523 0.54231 0.010 0.9923
Embol_Collateralart1 -0.58778 1.14262 -0.514 0.6070
carotid.subclavian1 0.28837 0.64745 0.445 0.6560
`Spinal drain?`1 1.03701 0.53742 1.930 0.0537 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 144.76 on 324 degrees of freedom
Residual deviance: 118.84 on 316 degrees of freedom
AIC: 136.84
Number of Fisher Scoring iterations: 18