What is best practice for scaling test data that goes beyond the scaling range of the train data ? particularly if you are using minmax scaling ?
For e.g. I minmax the following between [0,1]:
train_data = [2,4,7,0,12,4,5]
train_data_scaled = [0.16666667, 0.33333333, 0.58333333, 0. , 1. , 0.33333333]
test_data [2,11,0,14]
test_data_scaled = [0.16666667, 0.91666667, 0. , 1.16666667]
Note that for values exceeding the max value of training you have a value >1. Should you clip values prior to scaling ?
Note I am particularly working with neural networks.