1

I have a no-intercept relationship:

$$y_{i} = \beta_{1}x_{i} + \varepsilon_{i}$$

where $\varepsilon_{i} \sim \text{ iid } \mathcal{N}(0, \sigma^{2})$, and $i = 1, \dots, n$.

How do I derive $\hat{\beta}_{1}$, the least-squares estimator of $\beta_{1}$?

Alexis
  • 29,850
CC25
  • 33

0 Answers0