Suppose $s^2$ is the sample variance of a sample$(\text{of size }n)$ from a normal population with mean $\mu$ and variance $\sigma^2. \text{Here }s^2=\frac{\sum_{i=1}^n(x_i-\overline{x})^2}{n-1} $
As we know $\frac{(n-1)s^2}{\sigma^2}\sim \chi^2_{(n-1)}$ here
. Let $x\sim \chi^2_{(n-1)}$ then $E[x]=n-1$ and $Var[x]=2(n-1)$
\begin{align*}
E\left[\frac{(n-1)s^2}{\sigma^2}\right]=E[x]&=n-1\\
\implies \frac{(n-1)}{\sigma^2}E[s^2] &= n-1\\
\implies E[s^2]&=\sigma^2
\end{align*}
Similarly,
\begin{align*}
Var\left[\frac{(n-1)s^2}{\sigma^2}\right]=Var[x]&=2(n-1)\\
\implies \frac{(n-1)^2}{\sigma^4}E[s^2] &=2(n-1)\\
\implies Var[s^2]&=\color{red}{\frac{2\sigma^4}{(n-1)} }
\end{align*} Now we need a function of $s^2$ whose variance will be independent of $\sigma^2.$ Let $f(s^2)$ be the required transformation.
The required transformation is $$f(s^2)\stackrel{?}{=}\ln{s^2}$$
Question: How they get that transformation $?$
Similar things happen with Poisson variate and Binomial proportion with square root and $\sin^{-1}$ transformation. So I need a general approach to get that transformation which will make variance independent of population parameter.
Thanks for your time. Thanks in advance .

