Physical and biological processes often exhibit (exponential) decay on multiple timescales. A standard approach to modelling such a decay is to fit a sum of of exponentials $$ y(t) = \sum_k a_k \mathrm{e}^{-t/\tau_k} $$ where $\tau_k > 0$ is the $k$th characteristic timescale. Unfortunately, parameter estimation for this model is notoriously ill-conditioned when the characteristic timescales are unknown. If one is explicitly interested in these timescale parameters then the estimation difficulties are naturally unavoidable. However, if one simply wants a parametric curve which resembles well the empirical decay curve in the observed region, whilst tending to zero asymptotically, then fitting a sum of exponentials seems unnecessarily troublesome.
Suppose we relax the assumption of strictly exponential decay and instead assume only that
- $y(t) > 0$,
- $y'(t) < 0$,
- $y''(t) > 0$.
Is there a such family of curves which yields a better-conditioned (ideally orthogonal) parameter estimation problem than a sum of exponentials?
Edit: As requested in the comments, here is an example dataset.
y <- c(0.884055209313849, 0.803893983397689, 0.746397132725163, 0.705777060403705,
0.661407995137169, 0.623483588432092, 0.594882295689734, 0.580521453477321,
0.547799857276996, 0.539458241092239, 0.528979849768679, 0.508823655437141,
0.48875512562363, 0.475737660387551, 0.453989602466627, 0.453607155116856,
0.449699469387466, 0.430540770961381, 0.412202491804542, 0.419165082551951,
0.421113556516559, 0.398730401071103, 0.383534941709539, 0.41715157898334,
0.391276942058177, 0.373333743559256, 0.363797164291244, 0.371068290220633,
0.35363773187149, 0.34623321877465, 0.343873146975883, 0.344943217991846,
0.308395826422007, 0.340956700470444, 0.335410736459545, 0.318216669004373,
0.295125468244325, 0.300611724590081, 0.31725877961607, 0.306508299912537,
0.271323331043375, 0.280502445536032, 0.280827802071935, 0.271333873640008,
0.266933780694651, 0.268445439712102, 0.278541051077256, 0.26523910578266,
0.248729693401411, 0.254131544486039, 0.262245962214525, 0.26253719264958,
0.251761317152903, 0.245506599261308, 0.24366897722567, 0.23575216060148,
0.245532374691214, 0.249893026353401, 0.235110805525794, 0.235423945450893,
0.245767596093225, 0.241825321273371, 0.217470051497189, 0.229911041413764,
0.223960393239219, 0.202973515263714, 0.213084763047804, 0.233613157145369,
0.197615145867789, 0.196579426794745, 0.224726046610225, 0.218789241363574,
0.195947751219023, 0.202236685856023, 0.205679319690375, 0.194047325153948,
0.18680318400662, 0.191940475226121, 0.174568427766484, 0.205176020344368,
0.195087839892282, 0.200841363532111, 0.187013251178195, 0.205334174211714,
0.201165384816937, 0.178234442349502, 0.190482218491778, 0.199502959362586,
0.190662149528195, 0.183426946535524, 0.175182229708743, 0.186226262354694,
0.176864247898865, 0.167166380736567, 0.178755342191183, 0.18304083166045,
0.187981160568871, 0.180141043883917, 0.18547885616634, 0.179747807156895,
0.168423260536129, 0.162118692825004, 0.174788613344953, 0.172213971380834,
0.165022198566688, 0.18223228609134, 0.153622884106958, 0.150179710485986,
0.158928542459721, 0.15138508444697, 0.155135383810794, 0.168199849617203,
0.159054269326527, 0.153400466933264, 0.162750985987796, 0.157968723780781,
0.140144273187311, 0.14706658022586, 0.144054328987362, 0.137411787353518,
0.155493934447654, 0.1331965011179, 0.157137003243437, 0.140453165528883,
0.135619047347813, 0.152034087715058, 0.152421263833777, 0.14502200457531,
0.147184370242521, 0.131045308545383, 0.140656762485822, 0.140129955362258,
0.134451870933126, 0.157809692099575, 0.147509469160597, 0.137515576031743,
0.136658138665687, 0.145432694960525, 0.13764716382126, 0.139155482637229,
0.12416393096613, 0.129782255617861, 0.122481982883383, 0.137107898256597,
0.126771311533978, 0.127216799993841, 0.129934310612188, 0.130719366599547,
0.116466195528625, 0.10056145969211)



t <- 1:150would be fine. – Estacionario Nov 07 '19 at 14:38