Let $N(t)$ be a Poisson Process with rate $\lambda$
Find $\displaystyle P(N(4) \le 2N(2) \mid N(2) = 1) = \frac{\sum_{i = 0 }^2P(N(4) = i, N(2) = 1)}{P(N(2) = 1)} = ?$
Can I split this up using the independent increments?
Let $N(t)$ be a Poisson Process with rate $\lambda$
Find $\displaystyle P(N(4) \le 2N(2) \mid N(2) = 1) = \frac{\sum_{i = 0 }^2P(N(4) = i, N(2) = 1)}{P(N(2) = 1)} = ?$
Can I split this up using the independent increments?
\begin{align} \mathbb P(N(4)\leqslant 2N(2)\mid N(2)=1) &= \frac{\mathbb P(N(4)\leqslant 2N(2), N(2)=1)}{\mathbb P(N(2) = 1}\\ &= \frac{\sum_{i=0}^2 \mathbb P(N(4)=i, N(2)=1)}{\mathbb P(N(2)=1)}\\ &= \frac{\sum_{i=0}^2 \mathbb P (N(4) - N(2) = i,N(2)=1)}{\mathbb P(N(2)=1)}\\ &=\frac{\sum_{i=0}^2 \mathbb P (N(4) - N(2) = i)\mathbb P(N(2)=1)}{\mathbb P(N(2)=1)}\\ &= \sum_{i=0}^2 \mathbb P(N(4) - N(2) = i)\\ &= e^{-2\lambda}(1 + 2\lambda +2\lambda^2). \end{align}