I have a SARIMA model with one regressor (X):
> fit_arima.reg
Series: sales.ts
Regression with ARIMA(0,0,1)(2,1,1)[7] errors
Coefficients:
ma1 sar1 sar2 sma1 xreg
0.3078 0.3401 0.1026 -0.8621 -0.0015
s.e. 0.0305 0.0839 0.0636 0.0731 0.0016
sigma^2 estimated as 0.02782: log likelihood=348.89
AIC=-685.79 AICc=-685.7 BIC=-656.73
I would like to use these coefficients to obtain the actual equation. I took the example from this post, this post, this post and look at the ARIMAX Model Muddle post from Rob Hyndman's blog, but still the fitted and predicted values generated from the R forecast differ from those reproduced by hand from the built equation. I would appreciate your help with the correct equation. Here the built formula:
(EDITED based on the reply of Dr. Reilly and this post):
# (1 - sar1*B7 - sar2*B14)*(1 - B7)*(1 - xreg*X(t))*Y(t) = (1 + ma1*B)*(1-sma1*B7)E(t)
# thus:
# Y(t) = sar1*(Yt-7) + sar2*(Yt-14) + xreg*(Xt) - sar1*xreg*(X-7) - sar2*xreg*(Xt-14) + (Yt-7) - sar1*(Yt-14) -sar2*(Yt-21) - xreg*(Xt-7) + sar1*xreg(Xt-14) + sar2*xreg*(Xt-21) + ma1*(Et-1) - sma1*(Et-7) - ma1*sma1*(Et-8)
Here the original transformed data:
> data$transf
[1] 3.340642 3.665769 3.483445 3.192846 3.210586 3.463296 3.794070
[8] 3.369216 3.051538 2.998695 3.069298 2.957607 3.360215 3.770705
[15] 3.430720 3.050380 3.124830 3.305566 3.220892 3.747101 3.878349
[22] 3.655427 3.037426 3.143951 3.137354 3.378216 3.740126 3.446692
[29] 2.987219 3.171141 3.226600 3.193125 3.686726 3.486147 3.075547
[36] 3.233504 3.339253 3.258637 3.675962 3.787460 3.399501 3.509203
[43] 3.738622 3.580241 3.614053 3.802089 3.838471 3.427486 3.134177
[50] 3.286456 3.443576 3.341435 3.772908 3.864452 3.480869 2.893207
[57] 3.187803 3.277609 3.231470 3.725503 3.857995 3.505693 3.156246
[64] 3.212454 3.256237 3.281488 3.691524 3.812780 3.400538 3.076276
[71] 3.218536 3.138618 3.158061 3.670988 3.594171 3.069668 3.076276
[78] 3.281033 3.351796 3.713491 3.889806 3.198107 3.254548 3.292699
[85] 3.371806 3.747179 3.731508 3.454235 3.361728 3.381115 3.496376
[92] 3.537693 3.656769 3.695131 3.292034 3.388279 3.425208 3.445293
[99] 3.639785 3.721728 3.608847 3.115278 3.464340 3.420451 3.148294
[106] 3.562887 3.599774 3.846523 3.627263 3.262925 3.342620 3.224792
[113] 3.597476 3.710033 3.787319 3.605951 3.530072 3.026533 3.198382
[120] 3.293584 3.383277 3.784902 3.497483 3.085291 3.109579 3.365113
[127] 3.396025 3.620240 3.862191 3.437909 3.120574 3.274850 3.127105
[134] 3.353916 3.697665 3.735599 3.420781 3.180413 3.299725 3.266702
[141] 3.317227 3.516403 3.608098 3.452553 3.425045 3.452400 3.388101
[148] 3.494850 3.574726 3.698449 3.421439 3.093071 2.913284 3.119256
[155] 3.384891 3.478133 3.658965 3.388989 3.077004 3.160769 3.098644
[162] 3.453777 3.579212 3.708846 3.443106 3.160469 3.264346 3.019947
[169] 3.510277 3.585235 3.771146 3.398808 3.077731 3.253822 3.342620
[176] 3.193125 3.582972 3.674861 3.678791 3.128399 3.168497 3.291147
[183] 3.236033 3.581039 3.598134 3.430720 3.040207 3.231724 3.386499
[190] 3.372175 3.716337 3.750663 3.360593 3.142076 3.151676 3.258158
[197] 3.590396 3.489958 3.599119 3.445760 3.226084 3.301898 3.496376
[204] 3.486855 3.492341 3.515874 3.322426 3.315970 3.292034 3.396896
[211] 3.373096 3.611617 3.727541 3.391464 3.181844 3.405517 3.405346
[218] 3.510277 3.651666 3.650793 3.547898 3.180413 3.342423 3.458336
[225] 3.526598 3.494294 3.680698 3.256718 3.264818 3.454235 3.346744
[232] 3.560385 3.495128 3.599774 3.418798 3.461499 3.389698 3.349472
[239] 3.583879 3.522966 3.650599 3.462398 3.504743 3.188647 3.473049
[246] 3.758761 3.735759 3.325105 3.098990 3.225051 3.284656 3.302764
[253] 3.724440 3.627468 3.499962 3.125806 3.150142 3.354301 3.359456
[260] 3.752740 3.772762 3.391817 3.050380 3.187239 3.319730 3.308351
[267] 3.666892 3.752586 3.605521 3.071514 3.164055 3.259355 3.411788
[274] 3.650696 3.840169 3.370513 3.204391 3.211921 3.244277 3.217221
[281] 3.510277 3.813314 3.348694 2.962369 3.152594 3.501880 3.540705
[288] 3.426999 3.802910 3.394101 3.349472 3.573684 3.421275 3.696269
[295] 3.729893 3.722222 3.566673 3.147058 3.159266 3.296226 3.663512
[302] 3.567849 3.708336 3.359266 3.107549 3.201943 3.242790 3.325105
[309] 3.681693 3.833784 3.513750 3.107888 3.080266 3.502564 3.438542
[316] 3.715335 3.793581 3.391288 2.997823 3.372175 3.295127 3.555457
[323] 3.630123 3.845160 3.544192 3.068557 3.121231 3.271609 3.510277
[330] 3.610447 3.750354 3.425371 3.140508 3.211388 3.507856 3.465532
[337] 3.772688 3.690285 3.655715 3.187803 3.330008 3.348110 3.601191
[344] 3.794279 3.868938 3.683227 3.343802 3.591621 3.724194 3.732233
[351] 3.823474 3.790356 3.646011 3.075182 3.458033 3.769156 3.822430
[358] 3.796366 3.889358 3.280578 3.431846 3.276692 3.297979 3.366796
[365] 3.571126 3.244030 2.982723 3.044932 3.168792 3.423574 3.652150
[372] 3.736476 3.516006 3.006894 3.097951 3.195069 3.269746 3.637890
[379] 3.761552 3.205204 3.063333 3.269980 3.226858 3.345570 3.551938
[386] 3.832381 3.344981 3.026533 3.047664 3.311754 3.522575 3.674034
[393] 3.822691 3.499275 2.999131 3.082067 3.265525 3.410271 3.746712
[400] 3.670431 3.330211 3.358696 3.308137 3.670802 3.781109 3.806587
[407] 3.847881 3.380392 3.106531 3.203577 3.175802 3.497759 3.632862
[414] 3.805161 3.371806 2.946943 2.958564 3.063709 3.138618 3.816042
[421] 3.591955 3.107888 3.225309 3.189209 3.324282 3.721728 3.765966
[428] 2.967548 3.149527 3.293584 3.441695 3.572058 3.660771 3.424882
[435] 3.056524 3.249443 3.187803 3.339451 3.729893 3.819939 3.544440
[442] 3.190892 3.129690 3.250420 3.532372 3.713910 3.703205 3.194237
[449] 3.574957 3.401917 3.400538 3.503927 3.828982 3.585799 3.414973
[456] 3.313234 3.424882 3.464936 3.532627 3.668759 3.723045 3.334655
[463] 3.108565 3.146438 3.190892 3.372912 3.496930 3.540204 3.265290
[470] 3.034227 3.284882 3.320562 3.426674 3.721398 3.815445 3.441066
[477] 2.887617 3.318481 3.247237 3.506640 3.708931 3.677059 3.692142
[484] 3.260310 3.137037 3.133219 3.299507 3.644439 3.700098 3.416474
[491] 3.140194 3.235528 3.428783 3.412461 3.537819 3.522705 3.331427
[498] 3.093071 3.086004 3.388279 3.552911 3.663324 3.570193 3.661718
[505] 3.291369 3.569842 3.366796 3.694342 3.662947 3.551206 3.320354
[512] 2.972203 2.933993 3.230193 3.305136 3.564429 3.714330 3.623559
[519] 3.087071 3.176670 3.389166 3.306639 3.644242 3.683857 3.487704
[526] 2.905256 3.318481 3.296226 3.400711 3.514282 3.723620 3.190051
[533] 3.214314 3.344981 3.162863 3.698622 3.783332 3.458184 2.940018
[540] 3.026533 3.303412 3.255996 3.478855 3.650113 3.266467 3.070038
[547] 3.218798 3.276232 3.375115 3.606919 3.795254 3.178977 3.071514
[554] 3.176381 3.371437 3.323871 3.611192 3.634981 3.478422 3.249198
[561] 3.378034 3.347135 3.349083 3.401056 3.725095 3.490520 3.351603
[568] 3.149835 3.310481 3.269980 3.356790 3.480294 3.332438 3.225568
[575] 3.250664 3.308991 3.368473 3.707059 3.578066 3.431846 3.168203
[582] 3.260548 3.398634 3.610128 3.495267 3.683047 3.202488 3.315130
[589] 3.310481 3.300378 3.527372 3.553883 3.695919 3.456214 3.450095
[596] 3.255514 3.279667 3.488410 3.741703 3.669503 3.200303 3.296446
[603] 3.243782 3.138934 3.192010 3.705607 3.571942 3.375481 3.161667
[610] 3.013259 3.141450 3.432809 3.552668 3.658393 3.342225 2.907411
[617] 3.123198 3.224792 3.434729 3.523096 3.744136 3.334856 3.083861
[624] 3.065206 3.246252 3.042576 3.662852 3.812312 3.340841 3.124504
[631] 3.063333 3.210586 3.258637 3.640283 3.626443 3.436799 2.943000
[638] 3.178689 3.184407 3.326131 3.567026 3.781684 3.337459 3.024486
[645] 3.243534 3.360404 3.431846 3.581950 3.616055 3.416474 3.297104
[652] 3.384533 3.410777 3.667640 3.775756 3.758230 3.581039 3.128076
[659] 3.207904 3.170848 3.268110 3.716254 3.728273 3.412629 2.978637
[666] 3.103804 3.127105 3.396896 3.629104 3.662758 3.352183 2.991669
[673] 3.255273 3.216166 3.143327 3.531607 3.707911 3.454082 3.104487
[680] 3.123525 3.240050 3.339849 3.564548 3.673021 3.541454 3.063709
[687] 3.220892 3.172019 3.495960 3.652440 3.782831 3.519434 3.185259
[694] 3.211121 3.046105 3.439333 3.670802 3.738067 3.594945 3.038223
[701] 3.260787 3.510813 3.631545 3.814714 3.804821 3.658965 3.315551
[708] 3.538197 3.508664 3.681784 3.778079 3.715335 3.641474 3.489114
[715] 2.932981 3.518119 3.707655 3.734240 3.665206 3.775610 3.158362
[722] 3.498724 3.215109 3.611511 3.657725 3.220631 2.893207 2.990339
[729] 3.264109 3.018284 3.556423 3.706974 3.280578 3.091667 3.150449
[736] 3.056524 3.303412 3.542203 3.561459 3.392521 3.194514 2.958086
[743] 3.179264 3.348500 3.855337 3.396374 3.077731 3.188647 3.114277
[750] 3.150756 3.510679 3.777862 3.434729 3.033021 3.135451 3.578983
[757] 3.643354 3.825296 3.347720 3.111934 3.177536 3.428621 3.680879
[764] 3.496515 3.817698 3.282396 3.411956 3.431525 3.447623 3.436322
[771] 3.783689 3.830653 3.264582 3.067443 3.262688 3.233504 3.463296
[778] 3.413635 3.743196 3.359646 2.980003 3.144263 3.217747 3.514813
[785] 3.624798 3.338656 3.143951 3.016616 3.096910 3.232234 3.434729
[792] 3.632862 3.570309 3.196729 3.226858 3.363048 3.641573 3.753200
[799] 3.351796 2.991226 3.112270 3.548021 3.468790 3.670060 3.757168
[806] 3.803389 3.101403 3.168792 3.173478 3.150756 3.443576 3.667546
[813] 3.315340 3.315130 3.221936 3.388634 3.443419 3.481156 3.758988
[820] 3.358886 3.265054 3.306425 3.301030 3.594724 3.648945 3.631951
[827] 3.041393 3.290035 3.143951 2.919601 3.500922 3.648653 3.823930
[834] 3.319106 3.318898 3.242293 3.418964 3.605628 3.761025 3.615634
[841] 3.640084 3.161368 3.144574 3.604442 3.729651 3.414806 2.888179
[848] 3.014100 3.236537 3.563837 3.471438 3.695657 3.491222 3.042969
[855] 3.215373 3.169968 3.276692 3.563362 3.662663 3.378761 3.370883
[862] 3.343999 3.414973 3.304921 3.630224 3.697752 3.268812 3.032216
[869] 3.060698 3.548389 3.073352 3.534280 3.702344 3.328787 3.167022
[876] 3.233250 3.211121 3.645521 3.676328 3.456062 3.030195 3.044540
[883] 3.149835 3.325926 3.505693 3.620552 3.435844 3.058426 3.093422
[890] 3.244030 3.457276 3.520615 3.608526 3.352375 3.194514 3.154424
[897] 3.481443 3.294907 3.617420 3.685294 3.376029 3.035029 3.199481
[904] 3.439017 3.431846 3.360215 3.697229 3.432649 3.112270 3.082067
[911] 3.487563 3.236537 3.572291 3.731750 3.196729 3.111934 3.271144
[918] 3.188647 3.421275 3.667640 3.564903 3.305136 3.101403 3.163161
[925] 3.337260 3.311754 3.283527 3.761778 3.300813 3.341632 3.321184
[932] 3.335257 3.328583 3.631038 3.575419 3.466868 3.181844 3.216694
[939] 3.293141 3.635986 3.454845 3.561578 3.268812 3.085647
Here the values of the regressor or external variable:
> data$xreg
[1] 6 3 4 4 3 4 10 9 9 7 9 4 3 3 8 3 2 2 3 3 2 5
[23] 5 8 2 -2 5 7 6 7 10 10 9 5 7 8 3 1 1 1 3 6 9 9
[45] 10 11 9 11 15 12 11 9 7 8 10 7 6 7 9 9 9 8 8 7 12 13
[67] 10 14 11 12 12 15 13 9 13 10 9 7 8 8 11 11 14 13 18 13 13 14
[89] 13 13 12 15 15 16 21 12 13 14 12 13 12 13 10 10 10 13 14 12 13 13
[111] 8 8 9 11 13 15 11 14 9 11 11 14 14 10 11 14 19 15 15 16 17 21
[133] 17 14 13 14 18 21 19 23 22 23 19 21 20 18 20 22 22 19 17 16 14 17
[155] 16 17 20 20 17 21 23 21 21 26 28 27 26 30 22 21 19 20 21 19 15 16
[177] 20 19 21 21 21 25 27 26 23 24 23 17 18 19 19 20 23 23 23 20 19 20
[199] 16 17 16 20 18 18 18 18 18 18 19 20 17 18 20 18 19 17 14 17 19 20
[221] 20 21 21 19 21 18 18 18 17 20 20 19 21 23 24 24 24 13 17 22 18 16
[243] 18 17 17 16 16 15 16 16 16 15 14 12 14 14 13 15 16 15 16 19 16 17
[265] 17 17 17 15 16 15 14 14 15 13 15 15 15 14 15 14 17 17 16 19 13 15
[287] 16 13 13 12 15 17 16 15 12 13 11 9 11 13 11 13 12 8 9 9 7 11
[309] 10 8 6 6 10 11 11 7 8 6 12 13 14 10 6 5 6 9 5 4 2 5
[331] 5 8 8 7 9 10 3 3 1 1 3 7 5 4 4 7 5 8 10 11 10 9
[353] 9 6 2 3 7 13 10 7 9 9 10 7 4 4 4 6 8 6 6 5 5 9
[375] 5 6 8 5 3 6 9 11 10 8 5 9 11 10 8 5 6 5 3 3 2 2
[397] 3 6 4 7 5 5 3 5 7 7 8 8 9 7 5 3 2 3 2 -1 -4 -2
[419] -2 2 7 8 8 7 7 9 11 9 9 10 9 10 -2 -1 0 6 8 9 9 7
[441] 9 11 12 6 7 6 7 7 9 11 10 9 14 14 10 9 12 10 9 10 15 12
[463] 12 16 21 25 24 21 20 13 14 12 12 10 8 6 6 11 11 14 18 18 21 23
[485] 23 17 14 15 12 15 17 20 13 14 15 17 17 19 19 17 16 17 21 23 22 16
[507] 18 18 20 21 22 16 15 18 18 19 18 18 19 15 19 19 20 17 16 21 22 21
[529] 18 20 21 22 23 21 22 23 23 25 24 22 23 24 28 28 28 25 18 20 20 22
[551] 25 27 26 21 22 24 20 24 26 28 27 28 31 26 20 18 20 21 23 26 29 26
[573] 26 28 28 20 14 16 19 20 21 22 20 17 19 19 21 23 22 19 20 16 16 16
[595] 17 18 16 17 18 21 20 21 17 17 18 16 17 19 18 19 13 17 16 18 20 21
[617] 19 19 19 14 11 11 12 14 18 19 14 15 13 12 18 16 14 18 10 12 13 17
[639] 19 18 20 21 12 14 17 13 13 12 15 16 10 13 14 11 9 5 6 7 7 10
[661] 10 8 10 11 14 13 11 11 11 11 11 12 12 12 12 9 8 8 6 3 4 4
[683] 7 7 6 6 7 12 11 9 11 13 11 7 12 12 9 10 9 7 7 4 3 2
[705] 4 8 9 8 7 9 11 9 11 5 8 6 8 10 9 8 8 5 4 2 4 8
[727] 9 7 3 3 7 9 10 7 8 7 2 4 4 3 3 1 3 9 8 5 3 4
[749] 1 1 1 2 3 6 9 7 9 9 5 7 9 8 9 11 9 11 8 9 10 11
[771] 11 13 13 15 15 15 11 9 11 11 10 11 9 8 12 8 8 7 9 12 12 10
[793] 7 10 10 12 9 10 11 9 10 10 11 14 16 8 10 7 6 7 10 8 10 12
[815] 8 9 9 8 6 8 11 13 16 17 19 20 20 22 16 15 13 13 10 11 14 15
[837] 13 11 9 9 10 12 12 13 12 14 13 14 16 15 12 15 16 18 18 18 21 19
[859] 20 19 16 14 14 20 17 24 22 17 15 16 16 15 15 16 16 13 14 16 17 16
[881] 18 17 17 17 18 19 17 22 22 18 17 19 30 21 19 19 19 22 24 21 18 19
[903] 20 22 23 22 20 18 18 22 21 20 17 21 20 22 28 28 32 21 17 19 22 17
[925] 19 21 21 20 22 20 19 20 20 20 18 18 14 18 15 19 16 18 17 18
Here the future values of the external variable used to forecast the dependent one:
> data$future_xreg
[1] 18 19 20 23 25 28 28 28 20 19 20 23 19 19 21 19 16 16 17 17 17 17
[23] 17 18 18 18



+[(1- .340B** 7- .103B** 14)]-1
[(1+ .308B 1)(1- .862B** 7)] [A(T)] with the sign of ma coefficients presented in conventional form – IrishStat Sep 07 '19 at 11:19