Let $X$ be a random variable with lognormal distribution. Show that when sufficiently large then $Y:=(X-d\mid x\geq d)$ is approximately a random variable with generalized Pareto distribution.
Hint: Use the fact that $\operatorname{erf}(x)\approx 1-\frac{1}{\sqrt{x}}e^{-\frac{x^2}{2}}$ for large values of $x$.
My attempt: We recall that the density function for the lognormal distribution is given by $$ f(x)=\frac{1}{x\sigma\sqrt{2\pi}}e^{\frac{-(\log x-\mu)^2}{\sigma}}\:\:\text{ for }x>0. $$ The comulative distribution function for a generalized Pareto random variable is given by $$ G(x)=1-\left(1+\frac{\gamma x}{\theta}\right)^{\frac{-1}{\gamma}}. $$ The objective is to find parameters $\gamma$ and $\theta$ such that $\mathbb{P}(Y\leq y)\approx G(y)$, it is clear that $\gamma$ and $\theta$ will be expressed in terms of $\sigma$, $\mu$ and $d$. My attempt is: \begin{align} \mathbb{P}(Y\leq y) & =1- \frac{1-\int_0^{d+y}\frac{1}{x\sigma\sqrt{2\pi}} e^{\frac{-(\log x-\mu)^2}{\sigma}} \, dy }{1-\int_0^d\frac{1}{x\sigma\sqrt{2\pi}}e^{\frac{-(\log x-\mu)^2}{\sigma}} \, dy} \end{align}
We consider the changge of variable given by $t=\frac{\log x -\mu}{\sqrt{2}\sigma}$, then $dt=\frac{1}{\sqrt{2}\sigma x} \, dx$, so, $dx=\sqrt{2}\sigma x\, dt$. Therefores, we have
\begin{align} \mathbb{P}(Y\leq y) & =1- \frac{1-\frac{1}{\sqrt{\pi}}\int_{-\infty}^{\frac{\log(d+y) -\mu}{\sqrt{2}\sigma}}e^{-t^{2}} \, dy }{1-\frac{1}{\sqrt{\pi}}\int_{-\infty}^{\frac{\log(d) -\mu}{\sqrt{2}\sigma}}e^{-t^{2}} \, dy} \\ &= 1- \frac{1-\frac{1}{\sqrt{\pi}}\int_{-\infty}^0 e^{-t^2} dy- \frac{1}{\sqrt{\pi}}\int_0^{\frac{\log(d+y) -\mu}{\sqrt{2}\sigma}}e^{-t^2} \, dy }{1-\frac{1}{\sqrt{\pi}}\int_{-\infty}^0 e^{-t^2} \, dy-\frac{1}{\sqrt{\pi}}\int_0^{\frac{\log(d) -\mu}{\sqrt{2}\sigma}}e^{-t^2} \, dy} \\ &= 1- \frac{1-\frac{1}{2}- \frac{1}{\sqrt{\pi}}\int_0^{\frac{\log(d+y) -\mu}{\sqrt{2}\sigma}} e^{-t^{2}} \, dy }{1-\frac{1}{2}-\frac{1}{\sqrt{\pi}} \int_0^{\frac{\log(d) -\mu}{\sqrt{2}\sigma}}e^{-t^2} \, dy} \\ &= 1- \frac{\frac{1}{2}- \frac{1}{2} \operatorname{erf} \left(\frac{\log(d+y) -\mu}{\sqrt{2}\sigma}\right) }{\frac{1}{2}- \frac{1}{2} \operatorname{erf}\left(\frac{\log(d) -\mu}{\sqrt{2}\sigma}\right) } \\ &= 1- \frac{1- \operatorname{erf}\left(\frac{\log(d+y) -\mu}{\sqrt{2}\sigma}\right) }{1- \operatorname{erf} \left(\frac{\log(d) -\mu}{\sqrt{2}\sigma}\right) } \\ &\approx 1- \frac{\frac{1}{\sqrt{\frac{\log(d+y) -\mu}{\sqrt{2}\sigma}}}e^{-\frac{(\log(d+y)-\mu)^2}{4\sigma^2}} }{\frac{1}{\sqrt{\frac{\log(d) -\mu}{\sqrt{2}\sigma}}}e^{-\frac{(\log(d)-\mu)^2}{4\sigma^2}} } \leftarrow \text{by hint.}\\ &= 1- \sqrt{\frac{\log(d)-\mu}{\log(d+y)-\mu}}e^{-\frac{ (\log(d+y)-\mu)^2}{4\sigma^2}+\frac{(\log(d)-\mu)^2}{4\sigma^2}}\\ &=1- \sqrt{\frac{\log(d)-\mu}{\log(d+y)-\mu}}e^{\frac{1}{4\sigma^2}(\log(d+y)-\log(d))(\log(y+d)+\log(d)-\mu) }\\ &= 1- \sqrt{\frac{\log(d)-\mu}{\log(d+y)-\mu}}e^{-\frac{(\log(d+y)-\mu)^2}{4\sigma^2}+\frac{(\log(d)-\mu)^2}{4\sigma^2}}\\ &=1- \sqrt{\frac{\log(d)-\mu}{\log(d+y)-\mu}}e^{\frac{1}{4\sigma^2}\log\left(\frac{d+y}{d}\right)\left(\log(dy+d^2)-\mu\right) }\\ \end{align} I do not know how to continue, algebraically I have not been able calibrate the parameters to get what I need.
I ask for your help with this problem, any solution or suggestion will be well received.
This theorem gives the existence of the constants that determine the Generalized Pareto Distribution, but does not give an explicit form.
– Diego Fonseca May 20 '19 at 19:13