1

I understand that an estimator can be biased and yet consistent, and for me intuitivly in these cases the bias converge to zero as n goes to infinity, however can it be the case that the bias won't converge to zero in such an estimator?

1 Answers1

2

This answer is adapted from an example on Wikipedia.

Let $\theta$ be a parameter of interest, let $\delta > 0$ be fixed, and let $(\widehat{\theta}_n)_{n=1}^\infty$ be a sequence of estimators of $\theta$ with the following discrete distribution under $\theta$: $$ \begin{aligned} P_\theta(\widehat{\theta}_n = \theta) &= 1 - 1/n, \\ P_\theta(\widehat{\theta}_n = n \delta + \theta) &= 1/n. \end{aligned} $$

Claim. $\widehat{\theta}_n \overset{P_\theta}{\to} \theta$ as $n \to \infty$ (so the sequence $(\widehat{\theta}_n)_{n=1}^\infty$ is consistent), but the bias $E_\theta[\widehat{\theta}_n - \theta]$ does not converge to $0$ as $n \to \infty$.

Proof. To show consistency, we must show that $$ \lim_{n\to\infty} P_\theta(|\widehat{\theta}_n - \theta| > \varepsilon) = 0 $$ for all $\varepsilon > 0$. Thus, let $\varepsilon > 0$ be given. Note that for any $n$ we have $$ \begin{aligned} P_\theta(|\widehat{\theta}_n - \theta| > \varepsilon) &= P_\theta(|\widehat{\theta}_n - \theta| > \varepsilon, \widehat{\theta}_n = \theta) + P_\theta(|\widehat{\theta}_n - \theta| > \varepsilon, \widehat{\theta}_n = n \delta + \theta) \\ &= P_\theta(|\theta - \theta| > \varepsilon, \widehat{\theta}_n = \theta) + P_\theta(|n \delta + \theta - \theta| > \varepsilon, \widehat{\theta}_n = n \delta + \theta) \\ &= P_\theta(0 > \varepsilon, \widehat{\theta}_n = \theta) + P_\theta(n \delta > \varepsilon, \widehat{\theta}_n = n \delta + \theta) \\ &= 0 + P_\theta(n \delta > \varepsilon, \widehat{\theta}_n = n \delta + \theta) \\ &= \begin{cases} 0, & \text{if $n\delta \leq \varepsilon$,} \\ 1/n, & \text{if $n\delta > \varepsilon$.} \end{cases} \end{aligned} $$ In particular, we see that as $n \to \infty$, $P_\theta(|\widehat{\theta}_n - \theta| > \varepsilon) \to 0$, so $(\widehat{\theta}_n)_{n=1}^\infty$ is a consistent sequence of estimators.

However, we have $$ \begin{aligned} E_\theta[\widehat{\theta}_n - \theta] &= (\theta - \theta) P_\theta(\widehat{\theta}_n = \theta) + (n \delta + \theta - \theta) P_\theta(\widehat{\theta}_n = n \delta + \theta) \\ &= n \delta P_\theta(\widehat{\theta}_n = n \delta + \theta) \\ &= \delta \end{aligned} $$ for all $n$, so the bias is constant and positive.

Artem Mavrin
  • 3,957
  • Okay all good, but can such sequence with such distribution exists? – Loai Ghoraba Mar 04 '19 at 18:34
  • @LoaiGhoraba formally yes, but this is a pathological example constructed to show what can go wrong, so you wouldn't expect to see it in practice (for instance, it requires $\theta$ to be known...) – Artem Mavrin Mar 04 '19 at 18:36