A result in Bohrnstedt, George W., and Arthur S. Goldberger. “On the Exact Covariance of Products of Random Variables.” Journal of the American Statistical Association, vol. 64, no. 328, 1969, pp. 1439–42. JSTOR, https://doi.org/10.2307/2286081. Accessed 22 Jan. 2024.
provides the general formulae. Assuming multivariate normality it is:
$$ \mathrm{cov}(xy, uv) = \mathrm{E}(x)\,\mathrm{E}(u)\, \mathrm{cov}(y, v) +
\mathrm{E}(x)\,\mathrm{E}(v)\,\mathrm{cov}(y, u) + \\
\mathrm{E}(y)\,\mathrm{E}(u)\, \mathrm{cov}(x, v) +
\mathrm{E}(y)\,\mathrm{E}(v)\,\mathrm{cov}(x, u) + \\
\mathrm{cov}(x, u)\, \mathrm{cov}(y, v) + \mathrm{cov}(x, v)\,\mathrm{cov}(y, u)
$$
In your case: x = A, y=C, u=B, v =D and the only non cero covariances are
cov(A,B)= cov(x,u) and cov(C,D)=cov(y,v) so:
$$ \mathrm{cov}(AC, BD) = \mathrm{E}(A)\,\mathrm{E}(B)\, \mathrm{cov}(C, D) + \\
\mathrm{E}(C)\,\mathrm{E}(D)\,\mathrm{cov}(A, B) + \\
\mathrm{cov}(A, B)\, \mathrm{cov}(C, D)
$$
Which is the result of the previous post.
E(ABCD)-E(AC)E(BD) = E(AB)E(CD) - E(A)E(B)E(C)E(D)is an approximation in small samples. (In small samples, the sample independence may not be the population independence.) – ivo Welch Jul 28 '20 at 21:31