It's quite easy to prove this once you understand the relationship between the covariance and correlation and if you recognize that the variances for both $Y_i$ and $Y_j$ are identically $\sigma^2$:
\begin{eqnarray*}
V\left[\frac{1}{m}\sum_{i=1}^{m}y_{i}\right] & = & \frac{1}{m^{2}}\left[\sum_{i=1}^{m}V(y_{i})+\sum_{i=1}^{m}\sum_{i\ne j}^{m}Cov(y_{i},y_{j})\right]\\
& = & \frac{1}{m^{2}}\left[\sum_{i=1}^{m}\sigma^{2}+\sigma^{2}\sum_{i=1}^{m}\sum_{i\ne j}^{m}\frac{Cov(y_{i},y_{j})}{\sigma^{2}}\right]\\
& = & \frac{1}{m^{2}}\left[m\sigma^{2}+\sigma^{2}\sum_{i=1}^{m}\sum_{i\ne j}^{m}\rho\right]\\
& = & \frac{1}{m^{2}}\left[m\sigma^{2}+\sigma^{2}(m^{2}-m)\rho\right]\\
& = & \frac{\sigma^{2}}{m}+\frac{\sigma^{2}(m-1)\rho}{m}\\
& = & \frac{\sigma^{2}}{m}+\frac{\sigma^{2}\rho m}{m}-\frac{\sigma^{2}\rho}{m}\\
& = & \frac{\sigma^{2}-\sigma^{2}\rho}{m}+\rho\sigma^{2}\\
& = & \frac{\left(1-\rho\right)\sigma^{2}}{m}+\rho\sigma^{2}\\
& = & \frac{1}{m}\left(1-\rho\right)\sigma^{2}+\rho\sigma^{2}\,\,\,\,\,\,\,\,\,\blacksquare
\end{eqnarray*}