Given a random sample $X_1, X_2, ..., X_n$ where each $X_i$ has pdf:
$$ f(x; \theta) = 3 \theta^3 x^{-4} $$
and $0 \lt \theta \le x \le \infty$. Show that the distribution function $F$ for $min_{1 \le i \le n}{X_i}$ is:
$$ F(x) = 1 - (\theta/x)^{3n} $$
My calculations:
$$ F(x) = \int_{-\infty}^x{f(u)du} = \int_\theta^x{3 \theta^3 u^{-4}du} = 3 \theta^3 -\frac{1}{3}(x^{-3} - \theta^{-3}) = 1 - (\theta/x)^3 $$
I do not get how $F(x) = 1 - (\theta/x)^{3n}$. Where does the $n$ come from?