1

Let $ X_{1},...,X_{n} $ be a random sample of a population with finite variance. Prove that if $ \sigma^{2} > 0 $, then $ E(S_{n}) < \sigma $.

Based on Zen's answer

$0 \leq \mathrm{Var}(S_n) = \mathrm{E}(S_n^2) - \mathrm{E}^2(S_n) \;\;\Leftrightarrow\;\; \mathrm{E}^2(S_n) \leq \mathrm{E}(S_n^2) \;\;\Leftrightarrow\;\; \mathrm{E}(S_n) \leq \sqrt{\mathrm{E}(S_n^2)} =\sigma.$

From here we have that $ E(S_{n}) \leq \sigma$.

Using the condition $ \sigma^{2} >0 $, I can not see how to arrive at the strict inequality $ E(S_{n}) < \sigma $.

1 Answers1

1

If $\sigma > 0$ then $\mathbb{Var}(S_n) > 0$ so you can use the exact same reasoning but with strict inequality.

Ben
  • 124,856