I am using PCA in R to analyze groundwater level changes. I used:
PC.data<-prcomp(data,center=T,scale. = T) #prcomp
scores<-PC.data$x
head(scores)`
PC1 PC2 PC3 PC4 PC5
[1,] -5.921258 -2.704683 -0.5652839 0.04388705 0.84945464
[2,] -5.991433 -2.890179 -0.5363959 0.16285301 0.68334358
[3,] -5.954987 -2.978851 -0.7417375 0.33709042 0.36579053
[4,] -5.650401 -3.256866 -1.1687620 0.39116229 0.18990946
[5,] -5.278529 -3.316807 -1.7457909 0.49164240 -0.27280951
[6,] -4.285867 -2.827633 -2.4929304 0.39444379 -0.08617519
When I plot PC1 with all of my wells in a time series, I get:
Plot of time series of PC1 scores with water level of wells

I got an exact negative correlation between PC score and my original data. Is it reasonable to get PC component score in the inverse direction to the original data? What does this mean? Does this mean that PC1 has an inverse relationship with the wells?