Let $f_1$ and $f_2$ be two distributions and let $0<p<1$. You generate $X$, an observation from the mixture of $f_1$ and $f_2$, as follows: First generate $U\sim Unif(0,1)$. If $U\leq p$ then generate $Y\sim f_1$ and set $X=Y$. Otherwise, generate $Y\sim f_2$ and set $X=Y$.
It is therefore clear that for any set $A$, $$P(X\in A)$$
$$=P(X\in A|U\leq p)P(U\leq p)+P(X\in A|U>p)P(U>p)$$
$$=p\int_A f_1(x)dx+(1-p)\int_A f_2(X)dx$$
This is because given $U\leq p$, $X$ is coming from $f_1$.
Thus the density of $X$ will simply be $f_X(x)=pf_1(x)+(1-p)f_2(x)$.
So he $r$-th moment of $X$ will be $E(X^r)=\int_\mathbb R x^rf_X(x)dx=p\int_\mathbb Rx^rf_1(x)dx+(1-p)\int_\mathbb R x^rf_2(x)dx =pm_1(r)+(1-p)m_2(r)$
where $m_i(r)$ is the $r$-th moment under $f_i$.