I am doing research on the field of functional response of mites. I would like to do a regression to estimate the parameters (attack rate and handling time) of the Rogers type II function. I have a dataset of measurements. How can I can best determine outliers?
For my regression I use the following script in R (a non linear regression):
(the dateset is a simple 2 column text file called data.txt file with N0 values (number of initial prey) and FR values (number of eaten prey during 24 hours):
library("nlstools")
dat <- read.delim("C:/data.txt")
#Rogers type II model
a <- c(0,50)
b <- c(0,40)
plot(FR~N0,main="Rogers II normaal",xlim=a,ylim=b,xlab="N0",ylab="FR")
rogers.predII <- function(N0,a,h,T) {N0 - lambertW(a*h*N0*exp(-a*(T-h*N0)))/(a*h)}
params1 <- list(attackR3_N=0.04,Th3_N=1.46)
RogersII_N <- nls(FR~rogers.predII(N0,attackR3_N,Th3_N,T=24),start=params1,data=dat,control=list(maxiter= 10000))
hatRIIN <- predict(RogersII_N)
lines(spline(N0,hatRIIN))
summary(RogersII_N)$parameters
For plotting the calssic residuals graphs I use following script:
res <- nlsResiduals (RogersII_N)
plot (res, type = 0)
hist (res$resi1,main="histogram residuals")
qqnorm (res$resi1,main="QQ residuals")
hist (res$resi2,main="histogram normalised residuals")
qqnorm (res$resi2,main="QQ normalised residuals")
par(mfrow=c(1,1))
boxplot (res$resi1,main="boxplot residuals")
boxplot (res$resi2,main="boxplot normalised residuals")
Questions
- How can I best determine which data points are outliers?
- Are there tests I can use in R which are objective and show me which data points are outliers?