2

For any real number $x$,$[x]$ represents the smallest integer greater than or equal to $x$. If $X$ is an exponential random variable with mean $1/K$,show that $[X]$ is a geometric random variable with parameter $p = 1 - e^{-K}$.

How can I prove this?

I know what geometric and exponential distributions are!

Silverfish
  • 23,353
  • 27
  • 103
  • 201
Vishal
  • 23

1 Answers1

4

Here are a couple hints: \begin{align*} P([X] = x) &= P(x \le X < x+1) \tag{logic} \\ &= P(x < X \le x+1) \tag{$X$ is a continuous rv} \end{align*} for any non-negative integer $x$.

Taylor
  • 20,630