I'm performing latent class modelling using poLCA package in R. Below is an example from the documentation.
How to interpret G^2?
And how to assess whether the assumption of conditional independence holds between each two of the manifest variables A, B, C and D?
> library(poLCA)
> data(values)
> f <- cbind(A,B,C,D)~1
poLCA(f,values,nclass=3,maxiter=8000)
Conditional item response (column) probabilities,
by outcome variable, for each class (row)
$A
Pr(1) Pr(2)
class 1: 0.5188 0.4812
class 2: 0.0022 0.9978
class 3: 0.1557 0.8443
$B
Pr(1) Pr(2)
class 1: 0.9053 0.0947
class 2: 0.0204 0.9796
class 3: 0.5013 0.4987
$C
Pr(1) Pr(2)
class 1: 0.7310 0.2690
class 2: 0.0000 1.0000
class 3: 0.5522 0.4478
$D
Pr(1) Pr(2)
class 1: 0.9251 0.0749
class 2: 0.0874 0.9126
class 3: 0.7983 0.2017
Estimated class population shares
0.2266 0.193 0.5804
Predicted class memberships (by modal posterior prob.)
0.1435 0.1944 0.662
=========================================================
Fit for 3 latent classes:
=========================================================
number of observations: 216
number of estimated parameters: 14
residual degrees of freedom: 1
maximum log-likelihood: -503.3011
AIC(3): 1034.602
BIC(3): 1081.856
G^2(3): 0.3868563 (Likelihood ratio/deviance statistic)
X^2(3): 0.4225484 (Chi-square goodness of fit)