I have ran a series of models to see which best fit the response variable and I got the following (for the model average of all models with a $\Delta AIC < 2$). I am currently learning models so this output is one of my first:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 102.7190 5.5300 18.575 < 2e-16 ***
HDr -1.5495 0.3451 4.490 7.11e-06 ***
MF.vs.OF2 -7.6780 3.7507 2.047 0.04065 *
NHDp -0.5145 0.2909 1.769 0.07695 .
NHDr -1.4164 0.4663 3.037 0.00239 **
Site2 6.1477 2.7400 2.244 0.02485 *
tide.h.l2 -7.2546 2.6914 2.695 0.00703 **
tide.inc.out2 -5.8486 2.6187 2.233 0.02553 *
HDp -0.3773 0.2732 1.381 0.16731
mean.for.rate -0.3966 0.3220 1.232 0.21807
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Full model-averaged coefficients (with shrinkage):
(Intercept) HDr MF.vs.OF2 NHDp NHDr Site2 tide.h.l2 tide.inc.out2 HDp
102.718962 -1.549499 -5.734171 -0.239550 -1.416373 5.336532 -7.254627 -5.848553 -0.044795
mean.for.rate
-0.081734
Relative variable importance:
(Intercept) Age HDp HDr mean.for.rate MF.vs.OF NHDp NHDr
1.00 0.00 0.12 1.00 0.21 0.75 0.47 1.00
Site tide.h.l tide.inc.out
0.87 1.00 1.00
I have seen the estimates described as the effect of the variable and this is discussed in results sections as an important value to report (in regards to the size of them and their direction (+ve/-ve)). (the paper I was reading was stating that those with the bigger or smaller numbers had the greatest effect, even quoting that one was 48% lower than the other). However if this is what is reported and discussed, why would the relative variable importance vary in relation to the estimate? It seems that this should also be looked at but am not sure how the z and p values are calculated from a model.
Therefore, I would like to know which is more important when trying to discuss the findings. I admit that my knowledge is limited, but I would like to grasp this in simple terms if I could.
Also, I used a dredge command to find all the model combinations from a global model and found seven models (out of 1024) had a $\Delta AIC < 2$. I thought that this was a good cut-off for averaging, but could technically use any delta value as the cutoff.
Thank you.