2

How to proof that the $k$th moments of random variable $X\backsim N(0, \sigma^2)$ which is:

$$ E(X^k) = \begin{cases} \sigma^k(k!!) & \text{for k even;}\\ \ 0 & \text{for k odd} \end{cases} $$

I started from the basic definition of the $k$th moments:

$$E(X^k) =\int_{-\infty}^\infty x^k\frac{1}{\sqrt{2\pi}\sigma}e^{- \frac{x^2}{2\sigma^2}}dx$$

What kind of integration techniques that could solve this equation?

dsaxton
  • 12,138
  • 1
  • 26
  • 48
Vita
  • 21

0 Answers0