Suppose we fit a linear model $$y_{i}=\beta_{0}+\beta_{1}x_{i}+e_{i}$$ where $e_{i}\sim N(0,\sigma^{2})$. Suppose we also fit a random intercepts model $$y_{ij}=\alpha_{0}+\alpha_{1}x_{ij}+u_{j}+e_{ij}$$ where $e_{ij}\sim N(0,\sigma_{e}^{2})$ and $u_{j}\sim N(0,\sigma_{u}^{2})$.
Is the OLS estimator $\hat{\beta}_{1}$ equal to $\hat{\alpha}_{1}$?