I'm trying to calculate the standard error of a predictor variable for a simple linear regression, but I'm not sure how to manually calculate the standard error. Everything I've searched for results in computing the residual standard error or the estimate of the predictor coefficient.
For example,
Call:
lm(formula = data$price ~ data$sqft_living)
Residuals:
Min 1Q Median 3Q Max
-418475 -136416 -34874 108445 1259547
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 38289.31 61277.30 0.625 0.534
data$sqft_living 230.22 27.15 8.481 2.36e-13 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 232400 on 98 degrees of freedom
Multiple R-squared: 0.4233, Adjusted R-squared: 0.4174
F-statistic: 71.93 on 1 and 98 DF, p-value: 2.362e-13
I'm trying to manually compute the 27.15 under the standard error of sqft_living, but I can't find a formula anywhere.
Thanks in advance!