A typical confusion matrix from R's caret package might look like this:
> confusionMatrix(pred_gbm, vowel.test$y)
Confusion Matrix and Statistics
Reference
Prediction 1 2 3 4 5 6 7 8 9 10 11
1 33 1 0 0 0 0 0 0 0 4 0
2 8 23 3 0 0 0 2 0 1 16 1
3 1 14 31 3 0 0 0 0 0 0 0
4 0 0 2 31 3 1 0 0 0 0 2
5 0 0 0 0 17 7 9 0 0 0 0
6 0 0 6 8 16 23 3 0 0 0 4
7 0 0 0 0 3 0 27 7 5 0 3
8 0 0 0 0 0 0 0 29 5 0 0
9 0 4 0 0 0 0 1 6 24 2 13
10 0 0 0 0 0 0 0 0 2 20 0
11 0 0 0 0 3 11 0 0 5 0 19
Overall Statistics
Accuracy : 0.5996
95% CI : (0.5533, 0.6446)
No Information Rate : 0.0909
P-Value [Acc > NIR] : < 2.2e-16
Kappa : 0.5595
Mcnemar's Test P-Value : NA
In the above output, we have some statistics that explain the classification accuracy, like a 95% CI and a p-value, etc. How do I interpret the p-value and confidence interval to understand how good the classification is?