A block matrix $\mathbf{M}=\left[ \begin{array}{ccc} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^T & \mathbf{C} \end{array} \right]$ is invertible if $\mathbf{A}$ and $(\mathbf{C}-\mathbf{B}^T\mathbf{A}^{-1}\mathbf{B})$ are both non-singular.
I am looking on the invertibility of the Schur Complement $(\mathbf{C}-\mathbf{B}^T\mathbf{A}^{-1}\mathbf{B})$ at the moment. Is there any known results on the existence of the inverse in terms of $\mathbf{A}$, $\mathbf{B}$, and $\mathbf{C}$? I'm assuming $\mathbf{A, C}$ are square (not equally but compatibly)
Cheers