I was reading about optimization for an ill-posed problem in computer vision and came across the explanation below about optimization on Wikipedia. What I don't understand is, why do they call this optimization "Energy minimization" in Computer Vision?
An optimization problem can be represented in the following way:
Given: a function $f: A \to R$ from some set $A$ to the real numbers
Sought: an element $x_0$ in $A$ such that $f(x_0) ≤ f(x)$ for all $x$ in $A$ ("minimization") or such that $f(x_0) ≥ f(x)$ for all $x$ in $A$ ("maximization").
Such a formulation is called an optimization problem or a mathematical programming problem (a term not directly related to computer programming, but still in use for example in linear programming – see History below). Many real-world and theoretical problems may be modeled in this general framework. Problems formulated using this technique in the fields of physics and computer vision may refer to the technique as energy minimization, speaking of the value of the function $f$ as representing the energy of the system being modeled.
The energy function is a function of the configuration of latent variables, and the configuration of inputs provided in an example. Inference typically means finding a low energy configuration...this sentence is confusing for me (not a native English speaker) . Could you give a real example(maybe iris classification? ) to show what part of a machine learning contain energy function or energy minimization . – Mithril Dec 07 '17 at 08:53