I am trying to model counts govt, based on the counts lp,const,opp and another independent variable govtno. govt has many zeros, so I am using a zero-inflated negative binomial regression. The counts lp,const,opp also have many zeros. The pairwise correlations between these counts might indicate the presence of multicollinearity between predictors lp,const,opp:
govt const lp opp
A 1.0000000 0.2883734 0.4135134 0.3913364
B 0.2883734 1.0000000 0.4138627 0.5478605
C 0.4135134 0.4138627 1.0000000 0.5315744
D 0.3913364 0.5478605 0.5315744 1.0000000
1) How can I really check for multicollinearity in this model? I do not know how to calculate VIFs for zero inflated regression models.
2) How can I address this multicollinearity? My final goal is to test significance of the predictors, so solution(s) should allow for statistical significance testing.
Here is the summary output of the zero-inflated negative binomial regression:
>summary(m4 <- zeroinfl(govt ~ govtno + const + lp + opp, data = dat1b.w.nc, dist="negbin"))
Call:
zeroinfl(formula = govt ~ govtno + const + lp + opp, data = dat1b.w.nc, dist = "negbin")
Pearson residuals:
Min 1Q Median 3Q Max
-0.71953 -0.14796 -0.11066 -0.08794 15.45473
Count model coefficients (negbin with log link):
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.123334 0.272388 -0.453 0.6507
govtno -0.013671 0.006024 -2.269 0.0232 *
const 0.028129 0.015127 1.860 0.0630 .
lp 0.024683 0.014829 1.665 0.0960 .
opp 0.155652 0.036760 4.234 2.29e-05 ***
Log(theta) -0.639797 0.137549 -4.651 3.30e-06 ***
Zero-inflation model coefficients (binomial with logit link):
Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.943508 0.351314 11.225 < 2e-16 ***
govtno -0.027054 0.008617 -3.139 0.00169 **
const -0.052898 0.057112 -0.926 0.35433
lp -1.045437 0.187422 -5.578 2.43e-08 ***
opp -1.881200 0.349475 -5.383 7.33e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Theta = 0.5274
Number of iterations in BFGS optimization: 37
Log-likelihood: -1422 on 11 Df