How does one evaluate $$\mathbb{E}[S_n]$$ if
$$S_n = \left\{ \begin{array}{lr} X_1+X_2+...+X_n & : \text{with probability } \frac{1}{2}\\ Y_1+Y_2+...+Y_n & : \text{with probability } \frac{1}{2} \end{array} \right.\\$$
where, $X_i$, $Y_i$ are random variables.
Does the expectation "reduce" into the $X_i$s and $Y_i$s?
I.e.
$$\mathbb{E}[S_n]=\frac{1}{2}(\mathbb{E}[X_1]+...+\mathbb{E}[X_n]) + \frac{1}{2}(\mathbb{E}[Y_1]+...+\mathbb{E}[Y_n])$$?
Is this called "conditional expectation"?