If I want to compute the CRLB for iid uniform on $[0,\theta]$. I need in the denominator this expression: $E_\theta\left[\left(\frac{\partial \log f(X)}{\partial \theta}\right)^2\right]=nE_\theta\left[\left(\frac{\partial \log f(x)}{\partial \theta}\right)^2\right]$.
Notation edit: $X\equiv(X_1,...,X_n)$ and $x\equiv x_1$. In this case we have:
\begin{align} f(X) &=\theta^{-n} \tag{1} \\ \log f(X) &=-n\log \theta \tag{2} \\ \frac{\partial \log f(X)}{\partial \theta} &=\frac{-n}{\theta} \tag{3} \\ \left(\frac{\partial \log f(X)}{\partial \theta}\right)^2 &=\frac{n^2}{\theta^2} \tag{4} \\ E_\theta\left[\left(\frac{\partial \log f(X)}{\partial \theta}\right)^2\right] &=\frac{n^2}{\theta^2}\neq \frac{n}{\theta^2}=nE_\theta\left[\left(\frac{\partial \log f(x)}{\partial \theta}\right)^2\right] \tag{5} \end{align}
I can't see where I am making a mistake.